
Reading data files

Reading data files 1 / 25

Introduction

First thing we need to do is to read in data, so that we can use our
software to analyze.
Consider these:

▶ Spreadsheet data saved as .csv file.
▶ “Delimited” data such as values separated by spaces.
▶ Actual Excel spreadsheets.

Reading data files 2 / 25

Packages for this section

library(tidyverse)

Reading data files 3 / 25

A spreadsheet

Reading data files 4 / 25

Save as .csv

.csv or “comma-separated values” is a way of turning spreadsheet
values into plain text.
Easy to read into R
but does not preserve formulas. (This is a reason for doing all your
calculations in your statistical software, and only having data in your
spreadsheet.)
File, Save As Text CSV (or similar).
used name test1.csv.

Reading data files 5 / 25

The .csv file

id,x,y,group
p1,10,21,upper
p2,11,20,lower
p3,13,25,upper
p4,15,27,lower
p5,16,30,upper
p6,17,31,lower

To read this in:

Fire up R Studio at r.datatools.utoronto.ca
Upload this .csv file. (Bottom right, next to New Folder, Upload.)
Click Choose File, find the file, click Open. Click OK. See the file
appear bottom right.

Reading data files 6 / 25

Make a new Quarto document

File, New File, Quarto Document
…and get rid of the template document (leaving the first four lines).
Make a code chunk and in it put this. Run it.

library(tidyverse)

Reading data files 7 / 25

Reading in the file
Use read_csv with the name of the file, in quotes. Save the read-in
file in something, here called mydata. Make a new code chunk for
this:

mydata <- read_csv("test1.csv")
mydata

A tibble: 6 x 4
id x y group
<chr> <dbl> <dbl> <chr>

1 p1 10 21 upper
2 p2 11 20 lower
3 p3 13 25 upper
4 p4 15 27 lower
5 p5 16 30 upper
6 p6 17 31 lower

Reading data files 8 / 25

More on the above

read_csv guesses what kind of thing is in each column. Here it
correctly guesses that:

▶ id and group are text (categorical variables). id is actually “identifier
variable”: identifies individuals.

▶ x and y are “double”: numbers that might have a decimal point in
them.

Reading data files 9 / 25

R Studio on your own computer
Put the .csv file in the same folder as your project. Then read it in as
above like read_csv("test1.csv").
Or, use

f <- file.choose()
f

which brings up a file selector (as if you were going to find a file to load or
save it). Find your .csv file, the address of which will be saved in f, and
then:

mydata <- read_csv(f)

When you have selected the file, comment out the file.choose line
by putting a # on the front of it. That will save you having to find
the file again by mistake. (Keyboard shortcut: go to the line, type
control-shift-C or Mac equivalent with Cmd.)

Reading data files 10 / 25

Looking at what we read in
Again, type the name of the thing to display it:

mydata

A tibble: 6 x 4
id x y group
<chr> <dbl> <dbl> <chr>

1 p1 10 21 upper
2 p2 11 20 lower
3 p3 13 25 upper
4 p4 15 27 lower
5 p5 16 30 upper
6 p6 17 31 lower

This is a “tibble” or data frame, the standard way of storing a data
set in R.
Tibbles print as much as will display on the screen. If there are more
rows or columns, it will say so.
You might see navigation keys to display more rows or columns (if
there are more).

Reading data files 11 / 25

View-ing your data frame
Another way to examine your data frame is to View it, like this:

View(mydata)

…or find your data frame in the Global Environment top right and
click it.
This pops up a “data frame viewer” top left:

Reading data files 12 / 25

This View

Read-only: cannot edit data
Can display data satisfying conditions: click on Filter, then:

▶ for a categorical variable, type name of category you want
▶ for a quantitative variable, use slider to describe values you want.

Can sort a column into ascending or descending order (click little
arrows next to column name).
Clicking the symbol with arrow on it left of Filter “pops out” View
into separate (bigger) window.

Reading data files 13 / 25

Summarizing what we read in
It is always a good idea to look at your data after you have read it in,
to make sure you have believable numbers (and the right number of
individuals and variables).
Quick check for errors: these often show up as values too high or too
low, so the min and/or max will be unreasonable.
Five-number summary:

summary(mydata)

id x y group
Length:6 Min. :10.00 Min. :20.00 Length:6
Class :character 1st Qu.:11.50 1st Qu.:22.00 Class :character
Mode :character Median :14.00 Median :26.00 Mode :character

Mean :13.67 Mean :25.67
3rd Qu.:15.75 3rd Qu.:29.25
Max. :17.00 Max. :31.00

Quantitative, five-number summary plus mean.
Categorical, how many rows.

Reading data files 14 / 25

Reading from a URL

Any data file on the Web can be read directly.
Example data link:
Use URL instead of filename.
I like to save the URL in a variable first (because URLs tend to be
long), and then put that variable in the read_ function:

my_url <- "http://ritsokiguess.site/datafiles/global.csv"
my_url

[1] "http://ritsokiguess.site/datafiles/global.csv"

global <- read_csv(my_url)

Reading data files 15 / 25

http://ritsokiguess.site/datafiles/global.csv

The data

global

A tibble: 10 x 3
warehouse size cost
<chr> <dbl> <dbl>

1 A 225 12.0
2 B 350 14.1
3 A 150 8.93
4 A 200 11.0
5 A 175 10.0
6 A 180 10.1
7 B 325 13.8
8 B 290 13.3
9 B 400 15

10 A 125 7.97

Reading data files 16 / 25

Space-delimited files
Another common format for data is a text file with the values
separated by spaces. Top of some other data:

cup tempdiff
Starbucks 13
Starbucks 7
Starbucks 7
Starbucks 17.5
Starbucks 10
Starbucks 15.5
Starbucks 6
Starbucks 6
SIGG 12
SIGG 16
SIGG 9
SIGG 23
SIGG 11
SIGG 20.5
SIGG 12.5
SIGG 20.5
SIGG 24.5
CUPPS 6
CUPPS 6

Reading data files 17 / 25

Reading the coffee data
This file was on my computer so I uploaded it to
r.datatools.utoronto.ca first.
This time, read_delim, and we also have to say what the thing is
separating the values:

coffee <- read_delim("coffee.txt", " ")

Rows: 32 Columns: 2
-- Column specification --
Delimiter: " "
chr (1): cup
dbl (1): tempdiff

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Name of the cup, text, and tempdiff, a decimal number.

Reading data files 18 / 25

Looking at the values
coffee

A tibble: 32 x 2
cup tempdiff
<chr> <dbl>

1 Starbucks 13
2 Starbucks 7
3 Starbucks 7
4 Starbucks 17.5
5 Starbucks 10
6 Starbucks 15.5
7 Starbucks 6
8 Starbucks 6
9 SIGG 12

10 SIGG 16
i 22 more rows

These were four brands of travel mug (in cup), and for each, how much
the temperature of the coffee in the mug decreased over 30 minutes.

Reading data files 19 / 25

Reading from the Web; the soap data

Use the URL in place of the filename.
Save the URL in a variable first:

my_url <- "http://ritsokiguess.site/datafiles/soap.txt"
soap <- read_delim(my_url, " ")

Reading data files 20 / 25

The soap data (some)
soap

A tibble: 27 x 4
case scrap speed line

<dbl> <dbl> <dbl> <chr>
1 1 218 100 a
2 2 248 125 a
3 3 360 220 a
4 4 351 205 a
5 5 470 300 a
6 6 394 255 a
7 7 332 225 a
8 8 321 175 a
9 9 410 270 a

10 10 260 170 a
i 17 more rows

Reading data files 21 / 25

Data aligned in columns
Sometimes you see data aligned in columns, thus:

read_delim will not work: values separated by more than one space.
The number of spaces between values is not constant, because there
is one fewer space before the 10.
read_table works for this.

Reading data files 22 / 25

Reading in column-aligned data

drugs <- read_table("migraine.txt")
drugs

A tibble: 9 x 3
DrugA DrugB DrugC
<dbl> <dbl> <dbl>

1 4 6 6
2 5 8 7
3 4 4 6
4 3 5 6
5 2 4 7
6 4 6 5
7 3 5 6
8 4 10 5
9 4 6 5

Reading data files 23 / 25

Reading an Excel sheet directly

Here is my spreadsheet from before, but tarted up a bit:

Now a workbook with a second sheet called “notes”.

Reading data files 24 / 25

test2.xlsx

Reading it in
Read into R, saying that we only want the sheet “data”. Upload
spreadsheet first.
Excel spreadsheets must be “local”: cannot read one in from a URL.

library(readxl) # install first (once) with install.packages
mydata2 <- read_excel("test2.xlsx", sheet = "data")
mydata2

A tibble: 6 x 4
id x y group
<chr> <dbl> <dbl> <chr>

1 p1 10 21 upper
2 p2 11 20 lower
3 p3 13 25 upper
4 p4 15 27 lower
5 p5 16 30 upper
6 p6 17 31 lower

Reading data files 25 / 25

