Multiway Frequency Tables

Packages

library(tidyverse)

Multi-way frequency analysis

A study of gender and eyewear-wearing finds the following frequencies:

```
gender contacts glasses none female 121 32 129 male 42 37 85
```

- Is there association between eyewear and gender?
- Normally answer this with chisquare test (based on observed and expected frequencies from null hypothesis of no association).
- Two categorical variables and a frequency.
- We assess in way that generalizes to more categorical variables.

The data file

```
gender contacts glasses none female 121 32 129 male 42 37 85
```

- This is not tidy!
- Two variables are gender and eyewear, and those numbers all frequencies.

```
my_url <- "http://ritsokiguess.site/datafiles/eyewear.txt"
(eyewear <- read_delim(my_url, " "))</pre>
```

Tidying the data

```
# A tibble: 6 x 3
 gender eyewear frequency
 <chr> <chr>
                     <dbl>
1 female contacts
                       121
2 female glasses
                       32
3 female none
                       129
4 male contacts
                     42
5 male glasses
                       37
6 male none
                       85
```

Modelling

- Predict frequency from other factors and combos.
- glm with poisson family.

```
eyes.1 <- glm(frequency ~ gender * eyewear,
  data = eyes,
  family = "poisson"
)</pre>
```

• Called log-linear model.

What can we get rid of?

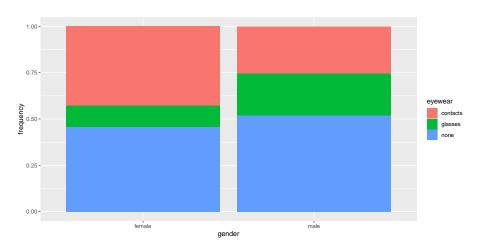
```
drop1(eyes.1, test = "Chisq")
Single term deletions
Model:
frequency ~ gender * eyewear
              Df Deviance AIC LRT Pr(>Chi)
<none>
                    0.000 47.958
gender:eyewear 2 17.829 61.787 17.829 0.0001345 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
nothing!
```

Conclusions

- ullet drop1 says what we can remove at this step. Significant = must stay.
- Cannot remove anything.
- Frequency depends on gender-eye wear combination, cannot be simplified further.
- Gender and eyewear are associated.
- For modelling, stop here.

Making a graph

```
ggplot(eyes, aes(x = gender, y = frequency, fill = eyewear)) -
geom_col(position = "fill")
```



Conclusions

- Females are more likely to wear contacts than males are.
- Females are *less* likely to wear glasses than males are.
- The previous two comments are the reasons for the significant association.

Code comments 1/2

• The code again:

```
ggplot(eyes, aes(x = gender, y = frequency, fill = eyewear))
geom_col(position = "fill")
```

- Variation on two-variable bar chart that we saw in C32.
- Comparing (most easily) proportions, so fill clearer than dodge.
- Each row of dataframe represents many people (the number in frequency), so use geom_col rather than geom_bar.
- geom_col takes a y that should be the frequency.

Code comments 2/2

```
ggplot(eyes, aes(x = gender, y = frequency, fill = eyewear)) -
geom_col(position = "fill")
```

- Often in this work, one variable in association is explanatory rather than response. Have that as x (here gender); eyewear is response and goes in fill.
- Interpretation: out of each category of explanatory ("out of females"), what proportion in each response category and where do they differ?

No association

Suppose table had been as shown below:

```
my_url <- "http://ritsokiguess.site/datafiles/eyewear2.txt"
eyewear2 <- read_table(my_url)
eyewear2</pre>
```

Comments

- Females and males wear contacts and glasses in same proportions
 - ▶ though more females and more contact-wearers.
- No association between gender and eyewear.

Analysis for revised data

```
eyes.2 <- glm(frequency ~ gender * eyewear,
  data = eyes2,
  family = "poisson"
)
drop1(eyes.2, test = "Chisq")</pre>
```

Single term deletions

No longer any association. Take out interaction.

No interaction

Model:

```
eyes.3 <- update(eyes.2, . ~ . - gender:eyewear)
drop1(eyes.3, test = "Chisq")</pre>
```

Single term deletions

frequency ~ gender + eyewear

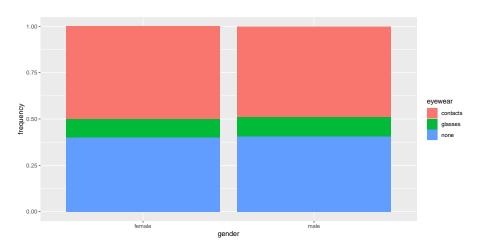
```
Df Deviance AIC LRT Pr(>Chi)
<none> 0.047 43.515
gender 1 48.624 90.091 48.577 3.176e-12 ***
eyewear 2 138.130 177.598 138.083 < 2.2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '

- More females (gender effect) over all eyewear
- fewer glasses-wearers (eyewear effect) over both genders
- no association (no interaction).

Graph shows no association

```
ggplot(eyes2, aes(x = gender, y = frequency, fill = eyewear))
geom_col(position = "fill")
```



Chest pain, being overweight and being a smoker

- In a hospital emergency department, 176 subjects who attended for acute chest pain took part in a study.
- Each subject had a normal or abnormal electrocardiogram reading (ECG), were overweight (as judged by BMI) or not, and were a smoker or not.
- How are these three variables related, or not?

The data

In modelling-friendly format:

ecg bmi smoke count abnormal overweight yes 47 abnormal overweight no 10 abnormal normalweight yes 8 abnormal normalweight no 6 normal overweight yes 25 normal overweight no 15 normal normalweight yes 35 normal normalweight no 30

First step

```
my_url <- "http://ritsokiguess.site/datafiles/ecg.txt"
chest <- read_delim(my_url, " ")
chest.1 <- glm(count ~ ecg * bmi * smoke,
   data = chest,
   family = "poisson"
)
drop1(chest.1, test = "Chisq")</pre>
```

Single term deletions

That 3-way interaction comes out.

Removing the 3-way interaction

```
chest.2 <- update(chest.1, . ~ . - ecg:bmi:smoke)
drop1(chest.2, test = "Chisq")</pre>
```

Single term deletions

```
Model:

count ~ ecg + bmi + smoke + ecg:bmi + ecg:smoke + bmi:smoke

Df Deviance AIC LRT Pr(>Chi)

<none> 1.3885 53.096

ecg:bmi 1 29.0195 78.727 27.6310 1.468e-07 ***

ecg:smoke 1 4.8935 54.601 3.5050 0.06119 .

bmi:smoke 1 4.4689 54.176 3.0803 0.07924 .

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

At $\alpha = 0.05$, bmi:smoke comes out.

Removing bmi:smoke

```
chest.3 <- update(chest.2, . ~ . - bmi:smoke)
drop1(chest.3, test = "Chisq")</pre>
```

Single term deletions

Model:

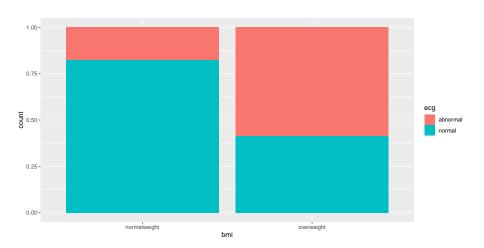
- ecg:smoke has become significant. So we have to stop.
- ecg is associated with both bmi and smoke, but separately (it doesn't depend on the combination of bmi and smoke).

Understanding the final model

- For each of the significant associations, make a bar chart (here, two-variable because two-way interactions)
- Here, ecg is response (patients came into the study being smokers or overweight) so use as fill in both graphs.
- y is the frequency column.

ecg:bmi

```
ggplot(chest, aes(x = bmi, y = count, fill = ecg)) +
  geom_col(position = "fill")
```

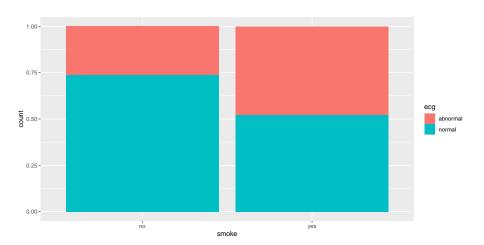


Comment

 Most of the normal weight people had a normal ECG as well, but for the overweight people, a small majority had an abnormal ECG.

ecg:smoke

```
ggplot(chest, aes(x = smoke, y = count, fill = ecg)) +
  geom_col(position = "fill")
```



Comments

- Most nonsmokers have a normal ECG, but smokers are about 50–50 normal and abnormal ECG.
- Don't look at smoke: bmi since not significant.

Simpson's paradox: the airlines example

	Alaska	Airlines	America	West
Airport	On time	Delayed	On time	Delayed
Los Angeles	497	62	694	117
Phoenix	221	12	4840	415
San Diego	212	20	383	65
San Francisco	503	102	320	129
Seattle	1841	305	201	61
Total	3274	501	6438	787

Use status as variable name for "on time/delayed".

- Alaska: 13.3% flights delayed (501/(3274 + 501)).
- America West: 10.9% (787/(6438 + 787)).
- America West more punctual, right?

Arranging the data

 Can only have single thing in columns, so we have to construct column names like this:

airport	${\tt aa_ontime}$	$aa_delayed$	${\tt aw_ontime}$	aw_delayed
LosAngeles	497	62	694	117
Phoenix	221	12	4840	415
SanDiego	212	20	383	65
SanFrancis	co 503	102	320	129
Seattle	1841	305	201	61

• Read in:

```
my_url <- "http://ritsokiguess.site/datafiles/airlines.txt"
airlines <- read_table(my_url)</pre>
```

Data, as read in

airlines

#	A tibble: 5	x 5			
	airport	aa_ontime	aa_delayed	${\tt aw_ontime}$	aw_delayed
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	LosAngeles	497	62	694	117
2	Phoenix	221	12	4840	415
3	SanDiego	212	20	383	65
4	SanFrancisco	503	102	320	129
5	Seattle	1841	305	201	61

Tidying

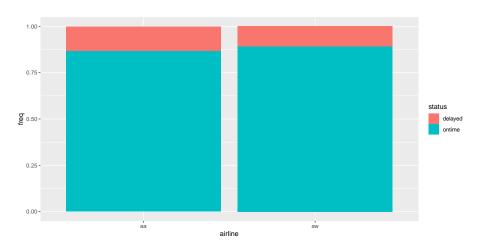
 Some tidying gets us the right layout, with frequencies all in one column and the airline and delayed/on time status separated out.
 This uses one of the fancy versions of pivot_longer:

The data frame punctual

# 4	A tibble: 20 3	4		
	airport	airline	status	freq
	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>
1	LosAngeles	aa	ontime	497
2	LosAngeles	aa	delayed	62
3	LosAngeles	aw	ontime	694
4	LosAngeles	aw	delayed	117
5	Phoenix	aa	ontime	221
6	Phoenix	aa	delayed	12
7	Phoenix	aw	ontime	4840
8	Phoenix	aw	delayed	415
9	SanDiego	aa	ontime	212
10	SanDiego	aa	delayed	20
11	SanDiego	aw	ontime	383
12	SanDiego	aw	delayed	65
13	${\tt SanFrancisco}$	aa	ontime	503
14	${\tt SanFrancisco}$	aa	delayed	102

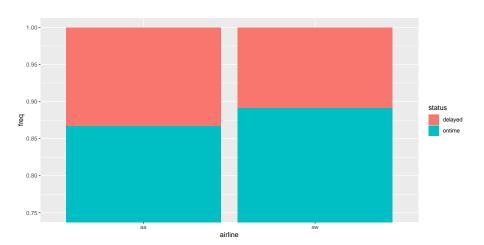
Proportions delayed by airline

```
ggplot(punctual, aes(x = airline, y = freq, fill = status)) +
  geom_col(position = "fill")
```



Shrinking the y-axis

```
ggplot(punctual, aes(x = airline, y = freq, fill = status)) +
geom_col(position = "fill") +
coord_cartesian(ylim = c(0.75, 1))
```



Comment

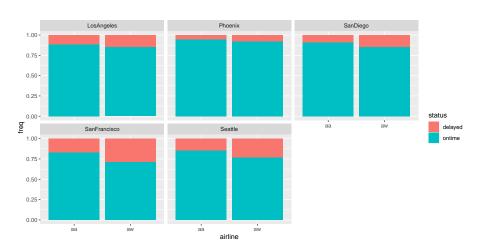
• Most flights are on time, but Alaska Airlines is late a little more often.

Proportion delayed by airport, for each airline

We now have *three* categorical variables, so use one of the explanatories (for me, airport) as facets:

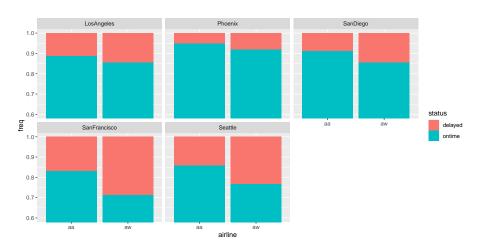
The graph(s)

```
ggplot(punctual, aes(x = airline, y = freq, fill = status)) +
geom_col(position = "fill") + facet_wrap(~ airport)
```



Zoom in on the y-scale

```
ggplot(punctual, aes(x = airline, y = freq, fill = status)) +
geom_col(position = "fill") + facet_wrap(~ airport) +
coord_cartesian(ylim = c(0.6, 1))
```



Simpson's Paradox

- America West more punctual overall,
- but worse at every single airport!
- How is that possible?
- Log-linear analysis sheds some light.

Model 1 and output

```
punctual.1 <- glm(freq ~ airport * airline * status,</pre>
  data = punctual, family = "poisson"
drop1(punctual.1, test = "Chisq")
Single term deletions
Model:
freq ~ airport * airline * status
                       Df Deviance AIC LRT Pr(>Chi)
                            0.0000 183.44
<none>
```

airport:airline:status 4 3.2166 178.65 3.2166 0.5223

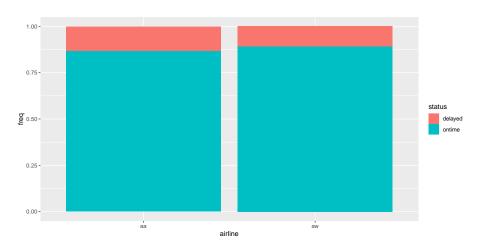
Remove 3-way interaction

```
punctual.2 <- update(punctual.1, ~ . - airport:airline:status)</pre>
drop1(punctual.2, test = "Chisq")
Single term deletions
Model.
freq ~ airport + airline + status + airport:airline + airport:status +
   airline status
               Df Deviance AIC LRT Pr(>Chi)
                       3.2 178.7
<none>
airport:airline 4 6432.5 6599.9 6429.2 < 2.2e-16 ***
airport:status 4 240.1 407.5 236.9 < 2.2e-16 ***
airline:status 1 45.5 218.9 42.2 8.038e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Stop here, and draw graphs to understand significant results.

airline:status:

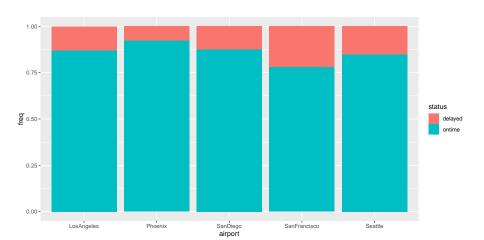
```
ggplot(punctual, aes(x = airline, y = freq, fill = status)) +
  geom_col(position = "fill")
```



- We did this one before.
- Slightly more of Alaska Airlines' flights delayed overall.

airport:status:

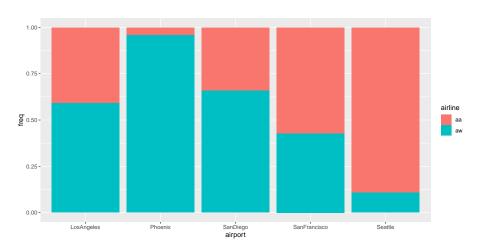
```
ggplot(punctual, aes(x = airport, y = freq, fill = status)) +
  geom_col(position = "fill")
```



- Flights into San Francisco (and maybe Seattle) are often late, and flights into Phoenix are usually on time.
- Considerable variation among airports.

airport:airline:

```
ggplot(punctual, aes(x = airport, y = freq, fill = airline)) -
geom_col(position = "fill")
```



- What fraction of each airline's flights are to each airport.
- Most of Alaska Airlines' flights to Seattle and San Francisco.
- Most of America West's flights to Phoenix.

The resolution

- Most of America West's flights to Phoenix, where it is easy to be on time.
- Most of Alaska Airlines' flights to San Francisco and Seattle, where it is difficult to be on time.
- Overall comparison looks bad for Alaska because of this.
- But, comparing like with like, if you compare each airline's performance to the same airport, Alaska does better.
- Aggregating over the very different airports was a (big) mistake: that was the cause of the Simpson's paradox.
- Alaska Airlines is more punctual when you do the proper comparison.

Ovarian cancer: a four-way table

- Retrospective study of ovarian cancer done in 1973.
- Information about 299 women operated on for ovarian cancer 10 years previously.
- Recorded:
 - stage of cancer (early or advanced)
 - type of operation (radical or limited)
 - X-ray treatment received (yes or no)
 - 10-year survival (yes or no)
- Survival looks like response (suggests logistic regression).
- Log-linear model finds any associations at all.

The data

after tidying:

```
stage operation xray survival freq
early radical no no 10
early radical no yes 41
early radical yes no 17
early radical yes yes 64
early limited no no 1
early limited no yes 13
early limited wes no 3
early limited yes yes 9
advanced radical no no 38
advanced radical no yes 6
advanced radical yes no 64
advanced radical yes yes 11
advanced limited no no 3
advanced limited no yes 1
advanced limited yes no 13
advanced limited yes yes 5
```

Reading in data

```
my_url <- "http://ritsokiguess.site/datafiles/cancer.txt"
cancer <- read_delim(my_url, " ")
cancer %>% slice(1:6)
```

```
# A tibble: 6 x 5
 stage operation xray survival freq
 <chr> <chr> <chr> <chr> <chr>
                               <dbl>
1 early radical no
                      no
                                  10
2 early radical no yes
                                41
3 early radical yes
                                 17
                      no
4 early radical yes
                                  64
                      yes
5 early limited
                nο
                      nο
6 early limited
                                  13
                no
                      yes
```

Model 1

hopefully looking familiar by now:

```
cancer.1 <- glm(freq ~ stage * operation * xray * survival,
  data = cancer, family = "poisson")</pre>
```

Output 1

<none>

See what we can remove:

stage:operation:xray:survival 1 0.60266 96.732 0.60266 0.4376

Non-significant interaction can come out.

0.00000 98.130

Model 2

```
cancer.2 <- update(cancer.1, . ~ . - stage:operation:xray:survival)</pre>
drop1(cancer.2, test = "Chisq")
Single term deletions
Model:
freq ~ stage + operation + xray + survival + stage:operation +
   stage:xray + operation:xray + stage:survival + operation:survival +
   xray:survival + stage:operation:xray + stage:operation:survival +
   stage:xray:survival + operation:xray:survival
                        Df Deviance ATC LRT Pr(>Chi)
<none>
                            0.60266 96.732
stage:operation:xray 1 2.35759 96.487 1.75493 0.1853
stage:operation:survival 1 1.17730 95.307 0.57465 0.4484
stage:xray:survival
                    1 0.95577 95.085 0.35311 0.5524
operation:xray:survival 1 1.23378 95.363 0.63113 0.4269
```

Least significant term is stage:xray:survival: remove.

Take out stage:xray:survival

```
cancer.3 <- update(cancer.2, . ~ . - stage:xray:survival)
drop1(cancer.3, test = "Chisq")</pre>
```

Single term deletions

```
Model:
```

```
freq ~ stage + operation + xray + survival + stage:operation +
    stage:xray + operation:xray + stage:survival + operation:survival +
    xray:survival + stage:operation:xray + stage:operation:survival +
    operation:xray:survival
```

	DI	DCVIdicc	AIO	1111	11(,0111)
<none></none>		0.95577	95.085		
stage:operation:xray	1	3.08666	95.216	2.13089	0.1444
stage:operation:survival	1	1.56605	93.696	0.61029	0.4347
operation:xray:survival	1	1.55124	93.681	0.59547	0.4403

operation:xray:survival comes out next.

Remove operation:xray:survival

```
cancer.4 <- update(cancer.3, . ~ . - operation:xray:survival)</pre>
drop1(cancer.4, test = "Chisq")
Single term deletions
Model:
freq ~ stage + operation + xray + survival + stage:operation +
    stage:xray + operation:xray + stage:survival + operation:survival +
   xray:survival + stage:operation:xray + stage:operation:survival
                        Df Deviance AIC LRT Pr(>Chi)
<none>
                             1.5512 93.681
xray:survival
                         1 1.6977 91.827 0.1464 0.70196
stage:operation:xray 1 6.8420 96.972 5.2907 0.02144 *
stage:operation:survival 1 1.9311 92.061 0.3799 0.53768
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- stage:operation:xray has now become significant, so won't remove that.
- Shows value of removing terms one at a time.
- There are no higher-order interactions containing both xray and survival, so now we get to test (and remove) xray:survival.

Remove xray:survival

```
cancer.5 <- update(cancer.4, . ~ . - xray:survival)</pre>
drop1(cancer.5, test = "Chisq")
Single term deletions
Model:
freq ~ stage + operation + xray + survival + stage:operation +
   stage:xray + operation:xray + stage:survival + operation:survival +
   stage:operation:xray + stage:operation:survival
                        Df Deviance AIC LRT Pr(>Chi)
<none>
                            1.6977 91.827
stage:operation:xray 1 6.9277 95.057 5.2300 0.0222 *
stage:operation:survival 1 2.0242 90.154 0.3265 0.5677
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Remove stage:operation:survival

```
cancer.6 <- update(cancer.5, . ~ . - stage:operation:survival)</pre>
drop1(cancer.6, test = "Chisq")
Single term deletions
Model:
freq ~ stage + operation + xray + survival + stage:operation +
   stage:xray + operation:xray + stage:survival + operation:survival +
   stage:operation:xray
                   Df Deviance AIC LRT Pr(>Chi)
<none>
                         2.024 90.154
stage:survival 1 135.198 221.327 133.173 <2e-16 ***
operation:survival 1 4.116 90.245 2.092 0.1481
stage:operation:xray 1 7.254 93.384 5.230 0.0222 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Last step?

Remove operation:survival.

```
drop1(cancer.7, test = "Chisq")
Single term deletions
Model:
freq ~ stage + operation + xray + survival + stage:operation +
   stage:xray + operation:xray + stage:survival + stage:operation:xray
                   Df Deviance AIC LRT Pr(>Chi)
<none>
                         4.116 90.245
stage:survival 1 136.729 220.859 132.61 <2e-16 ***
stage:operation:xray 1 9.346 93.475 5.23 0.0222 *
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

cancer.7 <- update(cancer.6, . ~ . - operation:survival)</pre>

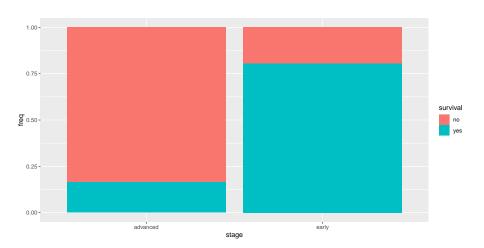
Finally done!

Conclusions

- What matters is things associated with survival (survival is "response").
- Only significant such term is stage:survival.

The graph

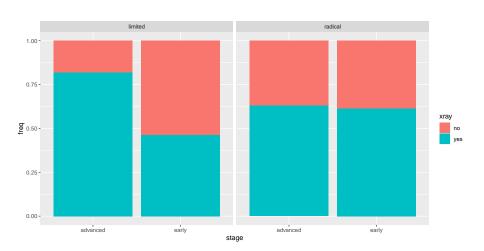
```
ggplot(cancer, aes(x = stage, y = freq, fill = survival)) +
  geom_col(position = "fill")
```



- Most people in early stage of cancer survived, and most people in advanced stage did not survive.
- This true regardless of type of operation or whether or not X-ray treatment was received. These things have no impact on survival.

What about that other interaction?

```
ggplot(cancer, aes(x = stage, y = freq, fill = xray)) +
geom_col(position = "fill") + facet_wrap(~ operation)
```



- The association is between stage and xray only for those who had the limited operation.
- For those who had the radical operation, there was no association between stage and xray.
- This is of less interest than associations with survival.

General procedure

- Start with "complete model" including all possible interactions.
- drop1 gives highest-order interaction(s) remaining, remove least non-significant.
- Repeat as necessary until everything significant.
- Look at graphs of significant interactions.
- Main effects not usually very interesting.
- Interactions with "response" usually of most interest: show association with response.