Statistical Inference: Power



Packages

library(tidyverse)



Errors in testing

What can happen:

Decision
Truth Do not reject Reject null
Null true  Correct Type | error
Null false Type Il error Correct

Tension between truth and decision about truth (imperfect).

@ Prob. of type | error denoted . Usually fix o, eg. a = 0.05.

@ Prob. of type Il error denoted 3. Determined by the planned
experiment. Low 3 good.

@ Prob. of not making type Il error called power (= 1 — j3). High
power good.
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Power

Suppose Hy, : i = 10, H, : 1 # 10 for some population mean .
Suppose H,, wrong. What does that say about p?
Not much. Could have ;t = 11 or t = 8 or i = 496. In each case,
H, wrong.
How likely a type Il error is depends on what p is:
> If =496, should be able to reject Hj, : it = 10 even for small sample,
so [ should be small (power large).
> If © = 11, might have hard time rejecting H, even with large sample,
so (3 would be larger (power smaller).

Power depends on true parameter value, and on sample size.
So we play “what if": “if u were 11 (or 8 or 496), what would power
be?".
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Figuring out power

@ Time to figure out power is before you collect any data, as part of
planning process.

@ Need to have idea of what kind of departure from null hypothesis of
interest to you, eg. average improvement of 5 points on reading test
scores. (Subject-matter decision, not statistical one.)

@ Then, either:

» "l have this big a sample and this big a departure | want to detect.
What is my power for detecting it?"

» “l want to detect this big a departure with this much power. How big a
sample size do | need?”
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How to understand/estimate power?

Suppose we test Hj, : p = 10 against H, : u # 10, where p is
population mean.

Suppose in actual fact, =8, so Hy, is wrong. We want to reject it.
How likely is that to happen?

Need population SD (take o = 4) and sample size (take n = 15). In
practice, get o from pilot/previous study, and take the n we plan to
use.

Idea: draw a random sample from the true distribution, test whether
its mean is 10 or not.

Repeat previous step “many” times.

“Simulation”.
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Making it go

@ Random sample of 15 normal observations with mean 8 and SD 4:

x <- rnorm(15, 8, 4)
X

[1] 14.487469 5.014611 6.924277 5.201860 8.852952
[6] 10.835874 3.686684 11.165242 8.016188 12.383518
[11] 1.378099 3.172503 13.074996 11.353573 5.015575

@ Test whether x from population with mean 10 or not (over):

N Sl infeence: Power 735



..continued

t.test(x, mu = 10)

One Sample t-test

data: x

t = -1.8767, df = 14, p-value = 0.08157

alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:

5.794735 10.280387

sample estimates:
mean of x

8.037561

e Fail to reject the mean being 10 (a Type Il error).
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or get just P-value

ans <- t.test(x, mu = 10)
ans$p.value

[1] 0.0815652



How | knew it was called that

str(ans)

List of 10

$

$

statistic

..— attr(*,

parameter

..— attr(x,

p.value
conf.int

..— attr(x,

estimate

..— attr(x,
null.value :
..— attr(*,

stderr

: Named num -1.88
"names")= chr "t"

: Named num 14
"names")= chr "df"

: num 0.0816

: num [1:2] 5.79 10.28
"conf.level")= num 0.95
: Named num 8.04
"names")= chr "mean of x"
Named num 10
"names")= chr "mean"

: num 1.05

alternative: chr "two.sided"

method
data.name

chr "One Sample t-test"
Chr llx n

attr(*, "class")= chr "htest"
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Run this lots of times

without a loop!

use rowwise to work one random sample at a time
draw random samples from the truth

test that p = 10

get P-value

Count up how many of the P-values are 0.05 or less.
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In code

library(tidyverse)

tibble(sim = 1:1000) %>%
rowwise () %>%
mutate (my_sample = list(rnorm(15, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count (p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:

“p_val <= 0.05" n
<lgl> <int>
1 FALSE 578
2 TRUE 422

We correctly rejected 422 times out of 1000, so the estimated power is
0.422.
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Aside: Try again with bigger sample

tibble(sim = 1:1000) %>%
rowwise () %>%
mutate (my_sample = list(rnorm(40, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count (p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:

“p_val <= 0.05° n
<lgl> <int>
1 FALSE 119
2 TRUE 881
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Calculating power

@ Simulation approach very flexible: will work for any test. But answer
different each time because of randomness.

@ In some cases, for example 1-sample and 2-sample t-tests, power can
be calculated.

@ power.t.test. Input delta is difference between null and true
mean:

power.t.test(n = 15, delta = 10-8, sd = 4,
type = "one.sample")
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Results

power.t.test(n =

15, delta = 10-8, sd = 4,

type = "one.sample")

One-sample

n
delta

sd
sig.level
power
alternative

test power calculation

15

2

4

0.05
0.4378466
two.sided
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Comparison of results

Method Power

Simulation 0.422
power.t.test 0.4378

@ Simulation power is similar to calculated power; to get more accurate
value, repeat more times (eg. 10,000 instead of 1,000), which takes
longer.

@ ClI for power based on simulation approx. 0.42 + 0.03.

@ With this small a sample size, the power is not great. With a bigger
sample, the sample mean should be closer to 8 most of the time, so
would reject H, : ;1 = 10 more often.
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Calculating required sample size

@ Often, when planning a study, we do not have a particular sample size
in mind. Rather, we want to know how big a sample to take. This
can be done by asking how big a sample is needed to achieve a
certain power.

@ The simulation approach does not work naturally with this, since you
have to supply a sample size.

» For that, you try different sample sizes until you get power close to
what you want.

@ For the power-calculation method, you supply a value for the power,
but leave the sample size missing.

@ Re-use the same problem: H, : ;1 = 10 against 2-sided alternative,
true = 8, 0 = 4, but now aim for power 0.80.
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Using power.t.test

@ No n=, replaced by a power=:

power.t.test(power=0.80, delta=10-8, sd=4, type="one.sample")

One-sample t test power calculation

n = 33.3672
delta = 2
sd = 4
sig.level = 0.05
power = 0.8
alternative = two.sided

@ Sample size must be a whole number, so round up to 34 (to get at
least as much power as you want).
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One-sided test

power.t.test(power=0.80, delta=10-8, sd=4,

type="one.sample", alternative = "one.sided")

One-sample

n
delta

sd
sig.level
power
alternative

test power calculation

26.13751
2

4

0.05

0.8
one.sided
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By simulation
Try a sample size and see what power you get. Here's n = 15 from before:

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate (my_sample = list(rnorm(15, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count (p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:

“p_val <= 0.05" n
<lgl> <int>
1 FALSE 578
2 TRUE 422

To get power 0.80, two-sided, need a bigger sample.
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To get a bigger power
How much bigger? No idea. Make any guess. What about n = 507

tibble(sim = 1:1000) %>%
rowwise () %>%
mutate(my_sample = list(rnorm(50, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count (p_val <= 0.05)

# A tibble: 2 x 2

# Rowwise:
“p_val <= 0.05" n
<lgl> <int>
1 FALSE 76
2 TRUE 924

Power now too big.
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Try again

sample size between 15 and 50, say n = 30:

tibble(sim = 1:1000) %>%
rowwise () %>%
mutate(my_sample = list(rnorm(30, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count (p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:

“p_val <= 0.05" n
<lgl> <int>
1 FALSE 252
2 TRUE 748

Now a little too small, hence right answer between 30 and 50, closer to 30.

N Sl infeence: Power 2735



One last try (n = 35)

tibble(sim = 1:1000) %>%

1
2

rowwise() %>%

mutate (my_sample = list(rnorm(35, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%

count (p_val <= 0.05)

A tibble: 2 x 2
Rowwise:

“p_val <= 0.05° n
<lgl> <int>
FALSE 179
TRUE 821
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But...

.. simulation has randomness: limit to how close you can get.

Rule of thumb: with 1000 simulations, estimated power within 0.03 (3%).
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Power curves

@ Rather than calculating power for one sample size, or sample size for
one power, might want a picture of relationship between sample size
and power.

@ Or, likewise, picture of relationship between difference between true
and null-hypothesis means and power.

o Called power curve.

@ Build and plot it yourself.
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Building it 1/2

@ If you feed power.t.test a collection (“vector”) of values, it will do
calculation for each one.
@ Do power for variety of sample sizes, from 10 to 100 in steps of 10:

ns <- seq(10,100,10)
ns

[1] 10 20 30 40 50 60 70 80 90 100

D statistical Inference: Power 2645



Building it 2/2

@ Calculate powers:

ans<- power.t.test(n=ns, delta=10-8, sd=4, type="one.sample")

ans

One-sample

n
delta

t

sd =

sig.level
power
alternative

test power calculation

10, 20, 30, 40, 50, 60, 70, 80, 90, 100

2

4

0.05

0.2928286, 0.5644829, 0.7539627, 0.8693979, 0.933:
two.sided
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Just the power

str(ans)
List of 8

$n : num [1:10] 10 20 30 40 50 60 70 80 90 100

$ delta : num 2

$ sd : num 4

$ sig.level : num 0.05

$ power : num [1:10] 0.293 0.564 0.754 0.869 0.934 ...
$ alternative: chr "two.sided"

$ note : NULL

$ method : chr "One-sample t test power calculation"

- attr(*, "class")= chr "power.htest"

ans$power

[1] 0.2928286 0.5644829 0.7539627 0.8693979 0.9338976
[6] 0.9677886 0.9847848 0.9929987 0.9968496 0.9986097
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Building a plot (1/2)

@ Make a data frame out of the values to plot:

d <- tibble(n=ns, power=ans$power)
d

# A tibble: 10 x 2

n power
<dbl> <dbl>

1 10 0.293

2 20 0.564

3 30 0.754

4 40 0.869

5 50 0.934

6 60 0.968

7 70 0.985

8 80 0.993

9 90 0.997

10 100 0.999
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Building a plot (2/2)

@ Plot these as points joined by lines, and add horizontal line at 1
(maximum power):

ggplot(d, aes(x = n, y = power)) + geom_point() +
geom_line() +
geom_hline(yintercept = 1, linetype = "dashed") -> g
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The power curve

N e e e et R ---

power
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Another way to do it:

tibble(n=ns) %>% rowwise() %>
mutate (power_output =
list(power.t.test(n = n, delta = 10-8, sd = 4,
type = "one.sample"))) %>%
mutate (power = power_output$power) %>
ggplot (aes(x=n, y=power)) + geom_point() + geom_line() +
geom_hline(yintercept=1, linetype="dashed") -> g2



The power curve done the other way

g2
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power

%5 50 75 100
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Power curves for means

@ Can also investigate power as it depends on what the true mean is
(the farther from null mean 10, the higher the power will be).

@ Investigate for two different sample sizes, 15 and 30.

o First make all combos of mean and sample size:

means <- seq(6,10,0.5)
means

[1] 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

ns <- c(15,30)
ns

[1] 15 30
combos <- crossing(mean=means, n=ns)
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The combos

combos

# A tibble: 18 x 2

mean n

<dbl> <dbl>
1 6 15
2 6 30
3 6.5 15
4 6.5 30
5 7 15
6 7 30
7 7.5 15
8 7.5 30
9 8 15
10 8 30
11 8.5 15
12 8.5 30
13 9 15
14 9 30
15 9.5 15
16 9.5 30
17 10 15
18 10 30
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Calculate and plot

o Calculate the powers, carefully:

ans <- with(combos, power.t.test(n=n, delta=10-mean, sd=4,
type="one.sample"))
ans$power

[1] 0.94908647 0.99956360 0.88277128 0.99619287
[6] 0.77070660 0.97770385 0.61513033 0.91115700
[9] 0.43784659 0.75396272 0.27216777 0.51028173
[13] 0.14530058 0.26245348 0.06577280 0.09719303
[17] 0.02500000 0.02500000
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Make a data frame to plot
pulling things from the right places:

d <- tibble(n=factor(combos$n), mean=combos$mean,
power=ans$power)
d

# A tibble: 18 x 3

n mean power

<fct> <dbl> <dbl>
115 6 0.949
2 30 6 1.00
3 15 6.5 0.883
4 30 6.5 0.996
5 15 7 0.771
6 30 7 0.978
7 15 7.5 0.615
8 30 7.5 0.911
9 15 8 0.438
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then make the plot:

g <- ggplot(d, aes(x = mean, y = power, colour = n)) +
geom_point() + geom_line() +
geom_hline(yintercept = 1, linetype = "dashed") +
geom_vline(xintercept = 10, linetype = "dotted")



The power curves
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Comments

When mean=10, that is, the true mean equals the null mean, H is
actually true, and the probability of rejecting it then is a = 0.05.

As the null gets more wrong (mean decreases), it becomes easier to
correctly reject it.

The blue power curve is above the red one for any mean < 10,
meaning that no matter how wrong H,, is, you always have a greater
chance of correctly rejecting it with a larger sample size.

Previously, we had H : 4 = 10 and a true p = 8, so a mean of 8
produces power 0.42 and 0.80 as shown on the graph.

With n = 30, a true mean that is less than about 7 is almost certain
to be correctly rejected. (With n = 15, the true mean needs to be
less than 6.)

N Sl infeence: Power o



Two-sample power

e For kids learning to read, had sample sizes of 22 (approx) in each

group
@ and these group SDs:

kids %>% group_by(group) %>%
summarize(n = n(), s = sd(score))

# A tibble: 2 x 3

group n s

<chr> <int> <dbl>
1c 23 17.1
2t 21 11.0
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Setting up

@ suppose a b-point improvement in reading score was considered
important (on this scale)

@ in a 2-sample test, nul(difference of) mean is zero, so delta is true
difference in means

@ what is power for these sample sizes, and what sample size would be
needed to get power up to 0.807

@ SD in both groups has to be same in power.t.test, so take as 14.
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Calculating power for sample size 22 (per group)

power.t.test(n=22, delta=5, sd=14, type="two.sample",
alternative="one.sided")

Two-sample t test power calculation

n = 22
delta = 5
sd = 14
sig.level = 0.05
power = 0.3158199
alternative = one.sided

NOTE: n is number in *each* group
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sample size for power 0.8

power.t.test(power=0.80, delta=b5, sd=14, type="two.sample",
alternative="one.sided")

Two-sample t test power calculation

n = 97.62598
delta = 5
sd = 14
sig.level = 0.05
power = 0.8
alternative = one.sided

NOTE: n is number in *each* group
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Comments

@ The power for the sample sizes we have is very small (to detect a
5-point increase).
@ To get power 0.80, we need 98 kids in each group!
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