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Packages

library(tidyverse)
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Errors in testing

What can happen:

Decision

Truth Do not reject Reject null
Null true Correct Type I error
Null false Type II error Correct

Tension between truth and decision about truth (imperfect).

Prob. of type I error denoted 𝛼. Usually fix 𝛼, eg. 𝛼 = 0.05.
Prob. of type II error denoted 𝛽. Determined by the planned
experiment. Low 𝛽 good.
Prob. of not making type II error called power (= 1 − 𝛽). High
power good.
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Power

Suppose 𝐻0 ∶ 𝜇 = 10, 𝐻𝑎 ∶ 𝜇 ≠ 10 for some population mean 𝜇.
Suppose 𝐻0 wrong. What does that say about 𝜇?
Not much. Could have 𝜇 = 11 or 𝜇 = 8 or 𝜇 = 496. In each case,
𝐻0 wrong.
How likely a type II error is depends on what 𝜇 is:

▶ If 𝜇 = 496, should be able to reject 𝐻0 ∶ 𝜇 = 10 even for small sample,
so 𝛽 should be small (power large).

▶ If 𝜇 = 11, might have hard time rejecting 𝐻0 even with large sample,
so 𝛽 would be larger (power smaller).

Power depends on true parameter value, and on sample size.
So we play “what if”: “if 𝜇 were 11 (or 8 or 496), what would power
be?”.

Statistical Inference: Power 4 / 45



Figuring out power

Time to figure out power is before you collect any data, as part of
planning process.
Need to have idea of what kind of departure from null hypothesis of
interest to you, eg. average improvement of 5 points on reading test
scores. (Subject-matter decision, not statistical one.)
Then, either:

▶ “I have this big a sample and this big a departure I want to detect.
What is my power for detecting it?”

▶ “I want to detect this big a departure with this much power. How big a
sample size do I need?”
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How to understand/estimate power?

Suppose we test 𝐻0 ∶ 𝜇 = 10 against 𝐻𝑎 ∶ 𝜇 ≠ 10, where 𝜇 is
population mean.
Suppose in actual fact, 𝜇 = 8, so 𝐻0 is wrong. We want to reject it.
How likely is that to happen?
Need population SD (take 𝜎 = 4) and sample size (take 𝑛 = 15). In
practice, get 𝜎 from pilot/previous study, and take the 𝑛 we plan to
use.
Idea: draw a random sample from the true distribution, test whether
its mean is 10 or not.
Repeat previous step “many” times.
“Simulation”.
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Making it go

Random sample of 15 normal observations with mean 8 and SD 4:

x <- rnorm(15, 8, 4)
x

[1] 14.487469 5.014611 6.924277 5.201860 8.852952
[6] 10.835874 3.686684 11.165242 8.016188 12.383518
[11] 1.378099 3.172503 13.074996 11.353573 5.015575

Test whether x from population with mean 10 or not (over):

Statistical Inference: Power 7 / 45



…continued

t.test(x, mu = 10)

One Sample t-test

data: x
t = -1.8767, df = 14, p-value = 0.08157
alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:
5.794735 10.280387

sample estimates:
mean of x
8.037561

Fail to reject the mean being 10 (a Type II error).
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or get just P-value

ans <- t.test(x, mu = 10)
ans$p.value

[1] 0.0815652
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How I knew it was called that
str(ans)

List of 10
$ statistic : Named num -1.88
..- attr(*, "names")= chr "t"

$ parameter : Named num 14
..- attr(*, "names")= chr "df"

$ p.value : num 0.0816
$ conf.int : num [1:2] 5.79 10.28
..- attr(*, "conf.level")= num 0.95

$ estimate : Named num 8.04
..- attr(*, "names")= chr "mean of x"

$ null.value : Named num 10
..- attr(*, "names")= chr "mean"

$ stderr : num 1.05
$ alternative: chr "two.sided"
$ method : chr "One Sample t-test"
$ data.name : chr "x"
- attr(*, "class")= chr "htest"
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Run this lots of times

without a loop!
use rowwise to work one random sample at a time
draw random samples from the truth
test that 𝜇 = 10
get P-value
Count up how many of the P-values are 0.05 or less.
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In code
library(tidyverse)
tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(my_sample = list(rnorm(15, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count(p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:
`p_val <= 0.05` n
<lgl> <int>

1 FALSE 578
2 TRUE 422

We correctly rejected 422 times out of 1000, so the estimated power is
0.422.
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Aside: Try again with bigger sample

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(my_sample = list(rnorm(40, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count(p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:
`p_val <= 0.05` n
<lgl> <int>

1 FALSE 119
2 TRUE 881
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Calculating power

Simulation approach very flexible: will work for any test. But answer
different each time because of randomness.
In some cases, for example 1-sample and 2-sample t-tests, power can
be calculated.
power.t.test. Input delta is difference between null and true
mean:

power.t.test(n = 15, delta = 10-8, sd = 4,
type = "one.sample")
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Results

power.t.test(n = 15, delta = 10-8, sd = 4,
type = "one.sample")

One-sample t test power calculation

n = 15
delta = 2

sd = 4
sig.level = 0.05

power = 0.4378466
alternative = two.sided
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Comparison of results

Method Power

Simulation 0.422
power.t.test 0.4378

Simulation power is similar to calculated power; to get more accurate
value, repeat more times (eg. 10,000 instead of 1,000), which takes
longer.
CI for power based on simulation approx. 0.42 ± 0.03.
With this small a sample size, the power is not great. With a bigger
sample, the sample mean should be closer to 8 most of the time, so
would reject 𝐻0 ∶ 𝜇 = 10 more often.
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Calculating required sample size

Often, when planning a study, we do not have a particular sample size
in mind. Rather, we want to know how big a sample to take. This
can be done by asking how big a sample is needed to achieve a
certain power.
The simulation approach does not work naturally with this, since you
have to supply a sample size.

▶ For that, you try different sample sizes until you get power close to
what you want.

For the power-calculation method, you supply a value for the power,
but leave the sample size missing.
Re-use the same problem: 𝐻0 ∶ 𝜇 = 10 against 2-sided alternative,
true 𝜇 = 8, 𝜎 = 4, but now aim for power 0.80.
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Using power.t.test
No n=, replaced by a power=:

power.t.test(power=0.80, delta=10-8, sd=4, type="one.sample")

One-sample t test power calculation

n = 33.3672
delta = 2

sd = 4
sig.level = 0.05

power = 0.8
alternative = two.sided

Sample size must be a whole number, so round up to 34 (to get at
least as much power as you want).
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One-sided test

power.t.test(power=0.80, delta=10-8, sd=4,
type="one.sample", alternative = "one.sided")

One-sample t test power calculation

n = 26.13751
delta = 2

sd = 4
sig.level = 0.05

power = 0.8
alternative = one.sided
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By simulation
Try a sample size and see what power you get. Here’s 𝑛 = 15 from before:

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(my_sample = list(rnorm(15, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count(p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:
`p_val <= 0.05` n
<lgl> <int>

1 FALSE 578
2 TRUE 422

To get power 0.80, two-sided, need a bigger sample.
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To get a bigger power
How much bigger? No idea. Make any guess. What about 𝑛 = 50?

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(my_sample = list(rnorm(50, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count(p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:
`p_val <= 0.05` n
<lgl> <int>

1 FALSE 76
2 TRUE 924

Power now too big.
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Try again
sample size between 15 and 50, say 𝑛 = 30:

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(my_sample = list(rnorm(30, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count(p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:
`p_val <= 0.05` n
<lgl> <int>

1 FALSE 252
2 TRUE 748

Now a little too small, hence right answer between 30 and 50, closer to 30.
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One last try (𝑛 = 35)

tibble(sim = 1:1000) %>%
rowwise() %>%
mutate(my_sample = list(rnorm(35, 8, 4))) %>%
mutate(t_test = list(t.test(my_sample, mu = 10))) %>%
mutate(p_val = t_test$p.value) %>%
count(p_val <= 0.05)

# A tibble: 2 x 2
# Rowwise:
`p_val <= 0.05` n
<lgl> <int>

1 FALSE 179
2 TRUE 821
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But…

… simulation has randomness: limit to how close you can get.

Rule of thumb: with 1000 simulations, estimated power within 0.03 (3%).
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Power curves

Rather than calculating power for one sample size, or sample size for
one power, might want a picture of relationship between sample size
and power.
Or, likewise, picture of relationship between difference between true
and null-hypothesis means and power.
Called power curve.
Build and plot it yourself.
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Building it 1/2

If you feed power.t.test a collection (“vector”) of values, it will do
calculation for each one.
Do power for variety of sample sizes, from 10 to 100 in steps of 10:

ns <- seq(10,100,10)
ns

[1] 10 20 30 40 50 60 70 80 90 100
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Building it 2/2

Calculate powers:

ans<- power.t.test(n=ns, delta=10-8, sd=4, type="one.sample")
ans

One-sample t test power calculation

n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
delta = 2

sd = 4
sig.level = 0.05

power = 0.2928286, 0.5644829, 0.7539627, 0.8693979, 0.9338976, 0.9677886, 0.9847848, 0.9929987, 0.9968496, 0.9986097
alternative = two.sided
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Just the power
str(ans)

List of 8
$ n : num [1:10] 10 20 30 40 50 60 70 80 90 100
$ delta : num 2
$ sd : num 4
$ sig.level : num 0.05
$ power : num [1:10] 0.293 0.564 0.754 0.869 0.934 ...
$ alternative: chr "two.sided"
$ note : NULL
$ method : chr "One-sample t test power calculation"
- attr(*, "class")= chr "power.htest"

ans$power

[1] 0.2928286 0.5644829 0.7539627 0.8693979 0.9338976
[6] 0.9677886 0.9847848 0.9929987 0.9968496 0.9986097
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Building a plot (1/2)
Make a data frame out of the values to plot:

d <- tibble(n=ns, power=ans$power)
d

# A tibble: 10 x 2
n power

<dbl> <dbl>
1 10 0.293
2 20 0.564
3 30 0.754
4 40 0.869
5 50 0.934
6 60 0.968
7 70 0.985
8 80 0.993
9 90 0.997
10 100 0.999
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Building a plot (2/2)

Plot these as points joined by lines, and add horizontal line at 1
(maximum power):

ggplot(d, aes(x = n, y = power)) + geom_point() +
geom_line() +
geom_hline(yintercept = 1, linetype = "dashed") -> g
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The power curve

g

0.4

0.6

0.8

1.0

25 50 75 100
n

po
w

er

Statistical Inference: Power 31 / 45



Another way to do it:

tibble(n=ns) %>% rowwise() %>%
mutate(power_output =

list(power.t.test(n = n, delta = 10-8, sd = 4,
type = "one.sample"))) %>%

mutate(power = power_output$power) %>%
ggplot(aes(x=n, y=power)) + geom_point() + geom_line() +
geom_hline(yintercept=1, linetype="dashed") -> g2
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The power curve done the other way

g2

0.4

0.6

0.8

1.0

25 50 75 100
n

po
w

er

Statistical Inference: Power 33 / 45



Power curves for means
Can also investigate power as it depends on what the true mean is
(the farther from null mean 10, the higher the power will be).
Investigate for two different sample sizes, 15 and 30.
First make all combos of mean and sample size:

means <- seq(6,10,0.5)
means

[1] 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

ns <- c(15,30)
ns

[1] 15 30

combos <- crossing(mean=means, n=ns)
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The combos
combos

# A tibble: 18 x 2
mean n

<dbl> <dbl>
1 6 15
2 6 30
3 6.5 15
4 6.5 30
5 7 15
6 7 30
7 7.5 15
8 7.5 30
9 8 15

10 8 30
11 8.5 15
12 8.5 30
13 9 15
14 9 30
15 9.5 15
16 9.5 30
17 10 15
18 10 30
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Calculate and plot

Calculate the powers, carefully:

ans <- with(combos, power.t.test(n=n, delta=10-mean, sd=4,
type="one.sample"))

ans$power

[1] 0.94908647 0.99956360 0.88277128 0.99619287
[5] 0.77070660 0.97770385 0.61513033 0.91115700
[9] 0.43784659 0.75396272 0.27216777 0.51028173
[13] 0.14530058 0.26245348 0.06577280 0.09719303
[17] 0.02500000 0.02500000
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Make a data frame to plot
pulling things from the right places:

d <- tibble(n=factor(combos$n), mean=combos$mean,
power=ans$power)

d

# A tibble: 18 x 3
n mean power
<fct> <dbl> <dbl>

1 15 6 0.949
2 30 6 1.00
3 15 6.5 0.883
4 30 6.5 0.996
5 15 7 0.771
6 30 7 0.978
7 15 7.5 0.615
8 30 7.5 0.911
9 15 8 0.438
10 30 8 0.754
11 15 8.5 0.272
12 30 8.5 0.510
13 15 9 0.145
14 30 9 0.262
15 15 9.5 0.0658
16 30 9.5 0.0972
17 15 10 0.025
18 30 10 0.025
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then make the plot:

g <- ggplot(d, aes(x = mean, y = power, colour = n)) +
geom_point() + geom_line() +
geom_hline(yintercept = 1, linetype = "dashed") +
geom_vline(xintercept = 10, linetype = "dotted")
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The power curves

g

0.00

0.25

0.50

0.75

1.00

6 7 8 9 10
mean

po
w

er

n

15

30

Statistical Inference: Power 39 / 45



Comments

When mean=10, that is, the true mean equals the null mean, 𝐻0 is
actually true, and the probability of rejecting it then is 𝛼 = 0.05.
As the null gets more wrong (mean decreases), it becomes easier to
correctly reject it.
The blue power curve is above the red one for any mean < 10,
meaning that no matter how wrong 𝐻0 is, you always have a greater
chance of correctly rejecting it with a larger sample size.
Previously, we had 𝐻0 ∶ 𝜇 = 10 and a true 𝜇 = 8, so a mean of 8
produces power 0.42 and 0.80 as shown on the graph.
With 𝑛 = 30, a true mean that is less than about 7 is almost certain
to be correctly rejected. (With 𝑛 = 15, the true mean needs to be
less than 6.)
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Two-sample power

For kids learning to read, had sample sizes of 22 (approx) in each
group
and these group SDs:

kids %>% group_by(group) %>%
summarize(n = n(), s = sd(score))

# A tibble: 2 x 3
group n s
<chr> <int> <dbl>

1 c 23 17.1
2 t 21 11.0
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Setting up

suppose a 5-point improvement in reading score was considered
important (on this scale)
in a 2-sample test, nul(difference of) mean is zero, so delta is true
difference in means
what is power for these sample sizes, and what sample size would be
needed to get power up to 0.80?
SD in both groups has to be same in power.t.test, so take as 14.
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Calculating power for sample size 22 (per group)

power.t.test(n=22, delta=5, sd=14, type="two.sample",
alternative="one.sided")

Two-sample t test power calculation

n = 22
delta = 5

sd = 14
sig.level = 0.05

power = 0.3158199
alternative = one.sided

NOTE: n is number in *each* group
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sample size for power 0.8

power.t.test(power=0.80, delta=5, sd=14, type="two.sample",
alternative="one.sided")

Two-sample t test power calculation

n = 97.62598
delta = 5

sd = 14
sig.level = 0.05

power = 0.8
alternative = one.sided

NOTE: n is number in *each* group
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Comments

The power for the sample sizes we have is very small (to detect a
5-point increase).
To get power 0.80, we need 98 kids in each group!
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