Functions

Packages for this section

library(tidyverse)
library(broom) # some regression stuff later

Don't repeat yourself
@ See this:

a <- 50

b <- 11

d <- 3

as <- sqrt(a - 1)
as

(117

bs <- sqrt(b - 1)
bs

[1] 3.162278

ds <- sqrt(d - 1)
ds

[1] 1.414214
e Functions 3/46

What's the problem?

Same calculation done three different times, by copying, pasting and
editing.

@ Dangerous: what if you forget to change something after you pasted?
@ Programming principle: “don’t repeat yourself”.

@ Hadley Wickham: don’t copy-paste more than twice.

°

Instead: write a function.

D Functions 4/46

Anatomy of function

@ Header line with function name and input value(s).
e Body with calculation of values to output/return.
@ Return value: the output from function. In our case:

sqrt_minus_1 <- function(x) {
ans <- sqrt(x - 1)
return(ans)

¥

or more simply (“the R way", better style)

sqrt_minus_1 <- function(x) {
sqrt(x - 1)
}

If last line of function calculates value without saving it, that value is

returned.
D Functions 5/46

About the input; testing 1/2

@ The input to a function can be called anything. Here we called it x.
This is the name used inside the function.

@ The function is a “machine” for calculating square-root-minus-1. It
doesn’t do anything until you call it:

sqrt_minus_1(50)

(11 7

sqrt_minus_1(11)

[1] 3.162278
sqrt_minus_1(3)

[1] 1.414214

R T 735

Testing 2/2
q <- 17
sqrt_minus_1(q)

(1] 4

sqrt_minus_1("text")
Error in x - 1: non-numeric argument to binary operator

@ It works! (At least, it works when it should and fails when it should.)

R T 735

Vectorization 1/2

@ We conceived our function to work on numbers:

sqrt_minus_1(3.25)
[1] 1.5

@ but it actually works on vectors too, as a free bonus of R:

sqrt_minus_1(c(50, 11, 3))

[1] 7.000000 3.162278 1.414214

@ or.. (over)

R T 5735

Vectorization 2/2

@ or even data frames:

d <- tibble(x = 1:2, y = 3:4)
d

A tibble: 2 x 2

X y

<int> <int>

1 1 3
2 2 4

sqrt_minus_1(d)

.414214
.732051

N =
= O M

D Functions 9/46

More than one input

@ Allow the value to be subtracted, before taking square root, to be
input to function as well, thus:

sqrt_minus_value <- function(x, d) {
sqrt(x - d)
}

o Call the function with the x and d inputs in the right order:

sqrt_minus_value(51, 2)

(117

@ or give the inputs names, in which case they can be in any order:

sqrt_minus_value(d = 2, x = 51)

(11 7

D Functions 10/46

Defaults 1/2

@ Many R functions have values that you can change if you want to,
but usually you don't want to, for example:

x <- c(3, 4, 5, NA, 6, 7)
X

(11 3 4 5NA 6 7
mean (x)

[1] NA

mean(x, na.rm = TRUE)
(11 5

@ By default, the mean of data with a missing value is missing, but if
you specify na.rm=TRUE, the missing values are removed before the

mean is calculated.
D Functions 11/46

Defaults 2/2
@ In our function, set a default value for d like this:
sqrt_minus_value <- function(x, d = 1) {

sqrt(x - d)
}

o If you specify a value for d, it will be used. If you don't, 1 will be used
instead:

sqrt_minus_value(51, 2)

(11 7

sqrt_minus_value(51)

[1] 7.071068

D Functions 12/46

Catching errors before they happen
@ What happened here?

sqrt_minus_value(6, 8)

Warning in sqrt(x - d): NaNs produced

[1] NaN

@ Message not helpful. Actually, function tried to take square root of
negative number.

@ In fact, not even error, just warning.

@ Check that the square root will be OK first. Here's how:

sqrt_minus_value <- function(x, d = 1) {
stopifnot(x - d >= 0)
sqrt(x - d)

}

D Functions 13/46

What happens with stopifnot
@ This should be good, and is:

sqrt_minus_value(8, 6)

[1] 1.414214

@ This should fail, and see how it does:

sqrt_minus_value(6, 8)

Error in sqrt_minus_value(6, 8): x - d >= 0 is not TRUE

@ Where the function fails, we get informative error, but if everything
good, the stopifnot does nothing.

@ stopifnot contains one or more logical conditions, and all of them
have to be true for function to work. So put in everything that you
want to be true.

D Functions 14 /46

Using R's built-ins
@ When you write a function, you can use anything built-in to R, or
even any functions that you defined before.
@ For example, if you will be calculating a lot of regression-line slopes,

you don't have to do this from scratch: you can use R's regression
calculations, like this:

my_df <- tibble(x = 1:4, y = c(10, 11, 10, 14))
my_df

A tibble: 4 x 2

X y

<int> <dbl>

1 1 10
2 2 11
3 3 10
4 4 14

D Functions 15 /46

Running the regression

my_df.1 <- Ilm(y ~ x, data = my_df)
tidy(my_df.1)

A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 8.5 1.88 4.53 0.0455
2 x 1.1 0.686 1.60 0.250

16/46

Pulling out just the slope

Use pluck:

tidy(my_df.1) %>% pluck("estimate"

[1] 1.1

» 2)

Making this into a function
o First step: make sure you have it working without a function (we do)
@ Inputs: two, an x and a y.
@ Output: just the slope, a number. Thus:
slope <- function(xx, yy) {
y.1 <= Im(yy ~ xx)

tidy(y.1) %>% pluck("estimate", 2)
+

@ Check using our data from before: correct:

with(my_df, slope(x, y))
[1] 1.1

D Functions 18/46

Passing things on

@ 1m has a lot of options, with defaults, that we might want to change.
Instead of intercepting all the possibilities and passing them on, we
can do this:

slope <- function(xx, yy, ...) {
y.1 <= In(yy ~ xx, ...)
tidy(y.1) %>% pluck("estimate", 2)
}

@ The ... in the header line means “accept any other input”, and the
. in the 1m line means “pass anything other than x and y straight
on to 1m".

D Functions 19/46

Using . ..

@ One of the things 1m will accept is a vector called subset containing
the list of observations to include in the regression.
@ So we should be able to do this:

with(my_df, slope(x, y, subset = 3:4))

(1] 4

@ Just uses the last two observations in x and y:

my_df 7%>% slice(3:4)

A tibble: 2 x 2

X y
<int> <dbl>

1 3 10
2 4 14

@ so the slope should be (14 —10)/(4 —3) =4 and is.
D Functions 20/46

What happens here?

with(my_df, slope(x, y, hair = "spiky"))

Warning: In 1lm.fit(x, y, offset = offset, singular.ok = singu
extra argument 'hair' will be disregarded

[1] 1.1

@ Where did the warning come from?

D Functions 21/46

Running a function for each of several inputs

@ Suppose we have a data frame containing several different x's to use
in regressions, along with the y we had before:

(d <- tibble(x1l = 1:4, x2 = c(8, 7, 6, 5), x3 = c(2, 4, 6, 9).

A tibble: 4 x 3
x1 x2 x3
<int> <dbl> <dbl>
1 8 2

DS W N -

2 7 4
3 6 6
4 5 9

@ Want to use these as different x’s for a regression with y from my_df
as the response, and collect together the three different slopes.

@ Python-like way: a for loop.

@ R-like way: map_dbl: less coding, but more thinking.

D Functions 22/46

The loop way

o “Pull out” column i of data frame d as d %>% pull(di).
o Create empty vector slopes to store the slopes.
@ Looping variable i goes from 1 to 3 (3 columns, thus 3 slopes):

slopes <- numeric(3)
for (i in 1:3) {

d %>% pull(i) -> xx

slopes[i] <- slope(xx, my_df$y)
}

slopes
[1] 1.1000000 -1.1000000 0.5140187

@ Check this by doing the three 1ms, one at a time.

D Functions 23/46

The map_dbl way

@ In words: for each of these (columns of d), run function (slope) with
inputs “it” and y), and collect together the answers.

@ Since slope returns a decimal number (a dbl), appropriate
function-running function is map_dbl:

map_dbl(d, \(d) slope(d, my_df$y))

x1 X2 x3
1.1000000 -1.1000000 0.5140187

@ Same as loop, with a lot less coding.

D Functions 24/ 46

Square roots

@ "“Find the square roots of each of the numbers 1 through 10":
x <- 1:10
map_dbl(x, \(x) sqrt(x))

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.f
[9] 3.000000 3.162278

D Functions 25/46

Summarizing all columns of a data frame, two ways

@ use my d from above:

map_dbl(d, \(d) mean(d))

x1 X2 x3
2.50 6.50 5.25

d %>% summarize(across(everything(), \(x) mean(x)))

A tibble: 1 x 3
x1 x2 x3
<dbl> <dbl> <dbl>
1 2.5 6.5 5.25

The mean of each column, with the columns labelled.

D Functions 2646

What if summary returns more than one thing?

@ For example, finding quartiles:

quartiles <- function(x) {
quantile(x, c(0.25, 0.75))

}

quartiles(1:5)

25% 75%
2 4

@ When function returns more than one thing, map (or map_df) instead
of map_dbl.

D Functions 2746

Map results
o Try:

map(d, \(d) quartiles(d)) -> e
e

$x1

25% 75%

1.75 3.25

$x2

25% 75%

5.75 7.25

$x3

25% 75%

3.50 6.75
o A list.

D Functions 28/46

Or

@ Better: pretend output from quartiles is one-row data frame:

map_df (d, \(d) quartiles(d))

A tibble: 3 x 2
“25%° TT5%°
<dbl> <dbl>

1 1.75 3.25

2 5.75 T7.25

3 3.5 6.75

D Functions 29/46

Or even

d %>% map_df (\(d) quartiles(d))

A tibble: 3 x 2
T25%° TT5%°
<dbl> <dbl>
1.75 3.25
5.75 7.25
3.5 6.75

w N =

Comments

@ This works because the implicit first thing in map is (the columns of)
the data frame that came out of the previous step.

@ These are 1st and 3rd quartiles of each column of d, according to R's
default definition (see help for quantile).

D Functions 31/46

Map in data frames with mutate

@ map can also be used within data frames to calculate new columns.
Let's do the square roots of 1 through 10 again:

d <- tibble(x = 1:10)
d %>% mutate(root = map_dbl(x, \(x) sqrt(x)))

A tibble: 10 x 2

X root
<int> <dbl>
1 1 1
2 2 1.41
3 3 1.73
4 4 2
5 5 2.24
6 6 2.45
7 7 2.65
8 8 2.83
9 9 3
10 10 3.16

32/46

Write a function first and then map it

o If the “for each” part is simple, go ahead and use map_-whatever.

@ If not, write a function to do the complicated thing first.

@ Example: “half or triple plus one”: if the input is an even number,
halve it; if it is an odd number, multiply it by three and add one.

@ This is hard to do as a one-liner: first we have to figure out whether
the input is odd or even, and then we have to do the right thing with
it.

R T ey

Odd or even?

@ Odd or even? Work out the remainder when dividing by 2:
6 %k 2
(11 0
5 %k 2
(11 1

@ 5 has remainder 1 so it is odd.

R T e

Write the function

o First test for integerness, then test for odd or even, and then do the
appropriate calculation:

hotpo <- function(x) {

stopifnot(round(x) == x) # passes if input an integer
remainder <- x % 2
if (remainder == 1) { # odd number

ans <- 3 * x + 1
}
else { # even number

ans <- x %/% 2 # integer division
}

ans

R T eEyE

Test it

hotpo(3)

[1] 10

hotpo(12)

(1] 6

hotpo(4.5)

Error in hotpo(4.5): round(x) == x is not TRUE

One through ten

@ Use a data frame of numbers 1 through 10 again:

tibble(x = 1:10) %>% mutate(y = map_int(x, \(x) hotpo(x)))

A tibble: 10 x 2

X y
<int> <int>

1 1 4
2 2 1
3 3 10
4 4 2
5 5 16
6 6 3
7 7 22
8 8 4
9 9 28
10 10 5

37/46

Until | get to 1 (if | ever do)

o If I start from a number, find hotpo of it, then find hotpo of that,
and keep going, what happens?

o If I getto 4, 2, 1,4, 2, 11I'll repeat for ever, so let's stop when we get
to 1:

hotpo_seq <- function(x) {
ans <- x
while (x !'= 1) {
X <- hotpo(x)
ans <- c(ans, x)
}

ans

@ Strategy: keep looping “while x is not 1"
@ Each new x: add to the end of ans. When | hit 1, | break out of the
while and return the whole ans.

R T ey

Trying it 1/2

@ Start at 6:

hotpo_seq(6)

[1] 6 310 516 8 4 2 1

Trying it 2/2

o Start at 27:

hotpo_seq(27)

[1] 27 82 41 124 62 31 94 47 142 71 214
[12] 107 322 161 484 242 121 364 182 91 274 137
[23] 412 206 103 310 155 466 233 700 350 175 526
[34] 263 790 395 1186 593 1780 890 445 1336 668 334
[45] 167 502 251 754 377 1132 566 283 850 425 1276
[66] 638 319 958 479 1438 719 2158 1079 3238 1619 4858
[67] 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077
[78] 9232 4616 2308 1154 577 1732 866 433 1300 650 325
[89] 976 488 244 122 61 184 92 46 23 70 35

[100] 106 53 160 80 40 20 10 5 16 8 4
[111] 2 1

R T oI

Which starting points have the longest sequences?

@ The length of the vector returned from hotpo_seq says how long it
took to get to 1.

@ Out of the starting points 1 to 100, which one has the longest
sequence?

D Functions 41/46

Top 10 longest sequences

tibble(start = 1:100) %>%
mutate(seq_length = map_int(
start, \(start) length(hotpo_seq(start)))) %>%
slice_max(seq_length, n = 10)

A tibble: 10 x 2
start seq_length

<int> <int>

1 97 119
2 73 116
3 54 113
4 55 113
5 27 112
6 82 111
7 83 111
8 41 110
9 62 108
10 63 108

@ 27 is an unusually low starting point to have such a long sequence.

D Functions 42/46

What happens if we save the entire sequence?

tibble(start
mutate (sequence = map(start, \(start) hotpo_seq(start)))

A tibble:

start
<int>

~N O O WwN -
N o O WN e

@ Each entry in sequence is itself a vector. sequence is a

= 1:7) %%

7 x 2

sequence
<list>

<int
<dbl
<dbl
<dbl
<dbl
<dbl
<dbl

[1]>
[21>
(81>
[31>
(61>
(91>
(171>

“list-column”.

43 /46

Using the whole sequence to find its length and its max

tibble(start
mutate (sequence
mutate (
seq_length = map_int(sequence, \(sequence) length(sequence)),

seq_max = map_int(sequence, \(sequence) max(sequence))

)

A tibble:
sequence
<list>

start
<int>

~N O oW -
~N O O WwN -

<int
<dbl
<dbl
<dbl
<dbl
<dbl
<dbl

7 x 4

[11>
[21>
[81>
[31>
(61>
[91>

[171>

1:7) %>%
map(start, \(start) hotpo_seq(start))) %>’

seq_length seq_max

<int>
1
2
8
3
6
9

17

<int>
1

2

16

4

16

16

52

44 /46

Does it work with rowwise?

tibble(start=1:7) %>%
rowwise () %>%
mutate(sequence = list(hotpo_seq(start))) %>%
mutate(seq_length = length(sequence)) %>/
mutate(seq_max = max(sequence))

H*

A tibble: 7 x 4
Rowwise:
start sequence seq_length seq_max

<int> <1list> <int> <dbl>
1 1 <int [1]> 1 1
2 2 <dbl [2]> 2 2
3 3 <dbl [8]> 8 16
4 4 <dbl [3]> 3 4
5 5 <dbl [6]> 6 16
6 6 <dbl [9]> 9 16
7 7 <dbl [17]> 17 52
It does.

45 /46

Final thoughts on this

Called the Collatz conjecture.

Nobody knows whether the sequence always gets to 1.
Nobody has found an n for which it doesn't.

A tree (link).

R T wEyE

https://www.jasondavies.com/collatz-graph/

