
Functions

Functions 1 / 46

Packages for this section

library(tidyverse)
library(broom) # some regression stuff later

Functions 2 / 46

Don’t repeat yourself
See this:

a <- 50
b <- 11
d <- 3
as <- sqrt(a - 1)
as

[1] 7

bs <- sqrt(b - 1)
bs

[1] 3.162278

ds <- sqrt(d - 1)
ds

[1] 1.414214
Functions 3 / 46

What’s the problem?

Same calculation done three different times, by copying, pasting and
editing.
Dangerous: what if you forget to change something after you pasted?
Programming principle: “don’t repeat yourself”.
Hadley Wickham: don’t copy-paste more than twice.
Instead: write a function.

Functions 4 / 46

Anatomy of function
Header line with function name and input value(s).
Body with calculation of values to output/return.
Return value: the output from function. In our case:

sqrt_minus_1 <- function(x) {
ans <- sqrt(x - 1)
return(ans)

}

or more simply (“the R way”, better style)

sqrt_minus_1 <- function(x) {
sqrt(x - 1)

}

If last line of function calculates value without saving it, that value is
returned.

Functions 5 / 46

About the input; testing 1/2
The input to a function can be called anything. Here we called it x.
This is the name used inside the function.
The function is a “machine” for calculating square-root-minus-1. It
doesn’t do anything until you call it:

sqrt_minus_1(50)

[1] 7

sqrt_minus_1(11)

[1] 3.162278

sqrt_minus_1(3)

[1] 1.414214

Functions 6 / 46

Testing 2/2

q <- 17
sqrt_minus_1(q)

[1] 4

sqrt_minus_1("text")

Error in x - 1: non-numeric argument to binary operator

It works! (At least, it works when it should and fails when it should.)

Functions 7 / 46

Vectorization 1/2

We conceived our function to work on numbers:

sqrt_minus_1(3.25)

[1] 1.5

but it actually works on vectors too, as a free bonus of R:

sqrt_minus_1(c(50, 11, 3))

[1] 7.000000 3.162278 1.414214

or… (over)

Functions 8 / 46

Vectorization 2/2
or even data frames:

d <- tibble(x = 1:2, y = 3:4)
d

A tibble: 2 x 2
x y

<int> <int>
1 1 3
2 2 4

sqrt_minus_1(d)

x y
1 0 1.414214
2 1 1.732051

Functions 9 / 46

More than one input
Allow the value to be subtracted, before taking square root, to be
input to function as well, thus:

sqrt_minus_value <- function(x, d) {
sqrt(x - d)

}

Call the function with the x and d inputs in the right order:

sqrt_minus_value(51, 2)

[1] 7

or give the inputs names, in which case they can be in any order:

sqrt_minus_value(d = 2, x = 51)

[1] 7

d

A tibble: 2 x 2
x y

<int> <int>
1 1 3
2 2 4

d.1 <- lm(y ~ x, data = d)
summary(d.1)

Call:
lm(formula = y ~ x, data = d)

Residuals:
ALL 2 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2 NaN NaN NaN
x 1 NaN NaN NaN

Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: NaN
F-statistic: NaN on 1 and 0 DF, p-value: NA

Functions 10 / 46

Defaults 1/2
Many R functions have values that you can change if you want to,
but usually you don’t want to, for example:

x <- c(3, 4, 5, NA, 6, 7)
x

[1] 3 4 5 NA 6 7

mean(x)

[1] NA

mean(x, na.rm = TRUE)

[1] 5

By default, the mean of data with a missing value is missing, but if
you specify na.rm=TRUE, the missing values are removed before the
mean is calculated.
That is, na.rm has a default value of FALSE: that’s what it will be
unless you change it.

Functions 11 / 46

Defaults 2/2
In our function, set a default value for d like this:

sqrt_minus_value <- function(x, d = 1) {
sqrt(x - d)

}

If you specify a value for d, it will be used. If you don’t, 1 will be used
instead:

sqrt_minus_value(51, 2)

[1] 7

sqrt_minus_value(51)

[1] 7.071068

Functions 12 / 46

Catching errors before they happen
What happened here?

sqrt_minus_value(6, 8)

Warning in sqrt(x - d): NaNs produced

[1] NaN

Message not helpful. Actually, function tried to take square root of
negative number.
In fact, not even error, just warning.
Check that the square root will be OK first. Here’s how:

sqrt_minus_value <- function(x, d = 1) {
stopifnot(x - d >= 0)
sqrt(x - d)

}

Functions 13 / 46

What happens with stopifnot
This should be good, and is:

sqrt_minus_value(8, 6)

[1] 1.414214

This should fail, and see how it does:

sqrt_minus_value(6, 8)

Error in sqrt_minus_value(6, 8): x - d >= 0 is not TRUE

Where the function fails, we get informative error, but if everything
good, the stopifnot does nothing.
stopifnot contains one or more logical conditions, and all of them
have to be true for function to work. So put in everything that you
want to be true.

Functions 14 / 46

Using R’s built-ins
When you write a function, you can use anything built-in to R, or
even any functions that you defined before.
For example, if you will be calculating a lot of regression-line slopes,
you don’t have to do this from scratch: you can use R’s regression
calculations, like this:

my_df <- tibble(x = 1:4, y = c(10, 11, 10, 14))
my_df

A tibble: 4 x 2
x y

<int> <dbl>
1 1 10
2 2 11
3 3 10
4 4 14

Functions 15 / 46

Running the regression

my_df.1 <- lm(y ~ x, data = my_df)
tidy(my_df.1)

A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 8.5 1.88 4.53 0.0455
2 x 1.1 0.686 1.60 0.250

Functions 16 / 46

Pulling out just the slope

Use pluck:

tidy(my_df.1) %>% pluck("estimate", 2)

[1] 1.1

Functions 17 / 46

Making this into a function

First step: make sure you have it working without a function (we do)
Inputs: two, an x and a y.
Output: just the slope, a number. Thus:

slope <- function(xx, yy) {
y.1 <- lm(yy ~ xx)
tidy(y.1) %>% pluck("estimate", 2)

}

Check using our data from before: correct:

with(my_df, slope(x, y))

[1] 1.1

Functions 18 / 46

Passing things on

lm has a lot of options, with defaults, that we might want to change.
Instead of intercepting all the possibilities and passing them on, we
can do this:

slope <- function(xx, yy, ...) {
y.1 <- lm(yy ~ xx, ...)
tidy(y.1) %>% pluck("estimate", 2)

}

The ... in the header line means “accept any other input”, and the
... in the lm line means “pass anything other than x and y straight
on to lm”.

Functions 19 / 46

Using ...
One of the things lm will accept is a vector called subset containing
the list of observations to include in the regression.
So we should be able to do this:

with(my_df, slope(x, y, subset = 3:4))

[1] 4

Just uses the last two observations in x and y:

my_df %>% slice(3:4)

A tibble: 2 x 2
x y

<int> <dbl>
1 3 10
2 4 14

so the slope should be (14 − 10)/(4 − 3) = 4 and is.
Functions 20 / 46

What happens here?

with(my_df, slope(x, y, hair = "spiky"))

Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
extra argument 'hair' will be disregarded

[1] 1.1

Where did the warning come from?

Functions 21 / 46

Running a function for each of several inputs
Suppose we have a data frame containing several different x’s to use
in regressions, along with the y we had before:

(d <- tibble(x1 = 1:4, x2 = c(8, 7, 6, 5), x3 = c(2, 4, 6, 9)))

A tibble: 4 x 3
x1 x2 x3

<int> <dbl> <dbl>
1 1 8 2
2 2 7 4
3 3 6 6
4 4 5 9

Want to use these as different x’s for a regression with y from my_df
as the response, and collect together the three different slopes.
Python-like way: a for loop.
R-like way: map_dbl: less coding, but more thinking.

Functions 22 / 46

The loop way

“Pull out” column i of data frame d as d %>% pull(i).
Create empty vector slopes to store the slopes.
Looping variable i goes from 1 to 3 (3 columns, thus 3 slopes):

slopes <- numeric(3)
for (i in 1:3) {
d %>% pull(i) -> xx
slopes[i] <- slope(xx, my_df$y)

}
slopes

[1] 1.1000000 -1.1000000 0.5140187

Check this by doing the three lms, one at a time.

Functions 23 / 46

The map_dbl way

In words: for each of these (columns of d), run function (slope) with
inputs “it” and y), and collect together the answers.
Since slope returns a decimal number (a dbl), appropriate
function-running function is map_dbl:

map_dbl(d, \(d) slope(d, my_df$y))

x1 x2 x3
1.1000000 -1.1000000 0.5140187

Same as loop, with a lot less coding.

Functions 24 / 46

Square roots

“Find the square roots of each of the numbers 1 through 10”:

x <- 1:10
map_dbl(x, \(x) sqrt(x))

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427
[9] 3.000000 3.162278

Functions 25 / 46

Summarizing all columns of a data frame, two ways
use my d from above:

map_dbl(d, \(d) mean(d))

x1 x2 x3
2.50 6.50 5.25

d %>% summarize(across(everything(), \(x) mean(x)))

A tibble: 1 x 3
x1 x2 x3

<dbl> <dbl> <dbl>
1 2.5 6.5 5.25

The mean of each column, with the columns labelled.

Functions 26 / 46

What if summary returns more than one thing?

For example, finding quartiles:

quartiles <- function(x) {
quantile(x, c(0.25, 0.75))

}
quartiles(1:5)

25% 75%
2 4

When function returns more than one thing, map (or map_df) instead
of map_dbl.

Functions 27 / 46

Map results
Try:

map(d, \(d) quartiles(d)) -> e
e

$x1
25% 75%
1.75 3.25

$x2
25% 75%
5.75 7.25

$x3
25% 75%
3.50 6.75

A list.
Functions 28 / 46

Or

Better: pretend output from quartiles is one-row data frame:

map_df(d, \(d) quartiles(d))

A tibble: 3 x 2
`25%` `75%`
<dbl> <dbl>

1 1.75 3.25
2 5.75 7.25
3 3.5 6.75

Functions 29 / 46

Or even

d %>% map_df(\(d) quartiles(d))

A tibble: 3 x 2
`25%` `75%`
<dbl> <dbl>

1 1.75 3.25
2 5.75 7.25
3 3.5 6.75

Functions 30 / 46

Comments

This works because the implicit first thing in map is (the columns of)
the data frame that came out of the previous step.
These are 1st and 3rd quartiles of each column of d, according to R’s
default definition (see help for quantile).

Functions 31 / 46

Map in data frames with mutate
map can also be used within data frames to calculate new columns.
Let’s do the square roots of 1 through 10 again:

d <- tibble(x = 1:10)
d %>% mutate(root = map_dbl(x, \(x) sqrt(x)))

A tibble: 10 x 2
x root

<int> <dbl>
1 1 1
2 2 1.41
3 3 1.73
4 4 2
5 5 2.24
6 6 2.45
7 7 2.65
8 8 2.83
9 9 3
10 10 3.16

Functions 32 / 46

Write a function first and then map it

If the “for each” part is simple, go ahead and use map_-whatever.
If not, write a function to do the complicated thing first.
Example: “half or triple plus one”: if the input is an even number,
halve it; if it is an odd number, multiply it by three and add one.
This is hard to do as a one-liner: first we have to figure out whether
the input is odd or even, and then we have to do the right thing with
it.

Functions 33 / 46

Odd or even?

Odd or even? Work out the remainder when dividing by 2:

6 %% 2

[1] 0

5 %% 2

[1] 1

5 has remainder 1 so it is odd.

Functions 34 / 46

Write the function

First test for integerness, then test for odd or even, and then do the
appropriate calculation:

hotpo <- function(x) {
stopifnot(round(x) == x) # passes if input an integer
remainder <- x %% 2
if (remainder == 1) { # odd number
ans <- 3 * x + 1

}
else { # even number
ans <- x %/% 2 # integer division

}
ans

}

Functions 35 / 46

Test it

hotpo(3)

[1] 10

hotpo(12)

[1] 6

hotpo(4.5)

Error in hotpo(4.5): round(x) == x is not TRUE

Functions 36 / 46

One through ten
Use a data frame of numbers 1 through 10 again:

tibble(x = 1:10) %>% mutate(y = map_int(x, \(x) hotpo(x)))

A tibble: 10 x 2
x y

<int> <int>
1 1 4
2 2 1
3 3 10
4 4 2
5 5 16
6 6 3
7 7 22
8 8 4
9 9 28
10 10 5

Functions 37 / 46

Until I get to 1 (if I ever do)
If I start from a number, find hotpo of it, then find hotpo of that,
and keep going, what happens?
If I get to 4, 2, 1, 4, 2, 1 I’ll repeat for ever, so let’s stop when we get
to 1:

hotpo_seq <- function(x) {
ans <- x
while (x != 1) {
x <- hotpo(x)
ans <- c(ans, x)

}
ans

}

Strategy: keep looping “while x is not 1”.
Each new x: add to the end of ans. When I hit 1, I break out of the
while and return the whole ans.

Functions 38 / 46

Trying it 1/2

Start at 6:

hotpo_seq(6)

[1] 6 3 10 5 16 8 4 2 1

Functions 39 / 46

Trying it 2/2

Start at 27:

hotpo_seq(27)

[1] 27 82 41 124 62 31 94 47 142 71 214
[12] 107 322 161 484 242 121 364 182 91 274 137
[23] 412 206 103 310 155 466 233 700 350 175 526
[34] 263 790 395 1186 593 1780 890 445 1336 668 334
[45] 167 502 251 754 377 1132 566 283 850 425 1276
[56] 638 319 958 479 1438 719 2158 1079 3238 1619 4858
[67] 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077
[78] 9232 4616 2308 1154 577 1732 866 433 1300 650 325
[89] 976 488 244 122 61 184 92 46 23 70 35

[100] 106 53 160 80 40 20 10 5 16 8 4
[111] 2 1

Functions 40 / 46

Which starting points have the longest sequences?

The length of the vector returned from hotpo_seq says how long it
took to get to 1.
Out of the starting points 1 to 100, which one has the longest
sequence?

Functions 41 / 46

Top 10 longest sequences
tibble(start = 1:100) %>%

mutate(seq_length = map_int(
start, \(start) length(hotpo_seq(start)))) %>%

slice_max(seq_length, n = 10)

A tibble: 10 x 2
start seq_length
<int> <int>

1 97 119
2 73 116
3 54 113
4 55 113
5 27 112
6 82 111
7 83 111
8 41 110
9 62 108

10 63 108

27 is an unusually low starting point to have such a long sequence.
Functions 42 / 46

What happens if we save the entire sequence?
tibble(start = 1:7) %>%
mutate(sequence = map(start, \(start) hotpo_seq(start)))

A tibble: 7 x 2
start sequence
<int> <list>

1 1 <int [1]>
2 2 <dbl [2]>
3 3 <dbl [8]>
4 4 <dbl [3]>
5 5 <dbl [6]>
6 6 <dbl [9]>
7 7 <dbl [17]>

Each entry in sequence is itself a vector. sequence is a
“list-column”.

Functions 43 / 46

Using the whole sequence to find its length and its max
tibble(start = 1:7) %>%
mutate(sequence = map(start, \(start) hotpo_seq(start))) %>%
mutate(
seq_length = map_int(sequence, \(sequence) length(sequence)),
seq_max = map_int(sequence, \(sequence) max(sequence))

)

A tibble: 7 x 4
start sequence seq_length seq_max
<int> <list> <int> <int>

1 1 <int [1]> 1 1
2 2 <dbl [2]> 2 2
3 3 <dbl [8]> 8 16
4 4 <dbl [3]> 3 4
5 5 <dbl [6]> 6 16
6 6 <dbl [9]> 9 16
7 7 <dbl [17]> 17 52

Functions 44 / 46

Does it work with rowwise?
tibble(start=1:7) %>%
rowwise() %>%
mutate(sequence = list(hotpo_seq(start))) %>%
mutate(seq_length = length(sequence)) %>%
mutate(seq_max = max(sequence))

A tibble: 7 x 4
Rowwise:
start sequence seq_length seq_max
<int> <list> <int> <dbl>

1 1 <int [1]> 1 1
2 2 <dbl [2]> 2 2
3 3 <dbl [8]> 8 16
4 4 <dbl [3]> 3 4
5 5 <dbl [6]> 6 16
6 6 <dbl [9]> 9 16
7 7 <dbl [17]> 17 52

It does.
Functions 45 / 46

Final thoughts on this

Called the Collatz conjecture.
Nobody knows whether the sequence always gets to 1.
Nobody has found an 𝑛 for which it doesn’t.
A tree (link).

Functions 46 / 46

https://www.jasondavies.com/collatz-graph/

