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Assessing assumptions

Our 𝑡-tests assume normality of variable being tested
but, Central Limit Theorem says that normality matters less if sample
is “large”
in practice “approximate normality” is enough, but how do we assess
whether what we have is normal enough?
so far, use histogram/boxplot and make a call, allowing for sample
size.
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What actually has to be normal

is: sampling distribution of sample mean
the distribution of sample mean over all possible samples
but we only have one sample!
Idea: assume our sample is representative of the population, and draw
samples from our sample (!), with replacement.
This gives an idea of what different samples from the population
might look like.
Called bootstrap, after expression “to pull yourself up by your own
bootstraps”.
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Packages

library(tidyverse)
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Blue Jays attendances

jays$attendance

[1] 48414 17264 15086 14433 21397 34743 44794 14184 15606
[10] 18581 19217 21519 21312 30430 42917 42419 29306 15062
[19] 16402 19014 21195 33086 37929 15168 17276

A bootstrap sample:

s <- sample(jays$attendance, replace = TRUE)
s

[1] 21195 34743 21312 44794 16402 19014 34743 21195 17264
[10] 18581 19014 19217 34743 19217 14433 15062 16402 15062
[19] 34743 15062 15086 15168 15086 48414 30430
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Sorting

It is easier to see what is happening if we sort both the actual
attendances and the bootstrap sample:

sort(jays$attendance)

[1] 14184 14433 15062 15086 15168 15606 16402 17264 17276
[10] 18581 19014 19217 21195 21312 21397 21519 29306 30430
[19] 33086 34743 37929 42419 42917 44794 48414

sort(s)

[1] 14433 15062 15062 15062 15086 15086 15168 16402 16402
[10] 17264 18581 19014 19014 19217 19217 21195 21195 21312
[19] 30430 34743 34743 34743 34743 44794 48414
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Getting mean of bootstrap sample
A bootstrap sample is same size as original, but contains repeated
values (eg. 15062) and missing ones (42917).
We need the mean of our bootstrap sample:

mean(s)

[1] 23055.28

This is a little different from the mean of our actual sample:

mean(jays$attendance)

[1] 25070.16

Want a sense of how the sample mean might vary, if we were able to
take repeated samples from our population.
Idea: take lots of bootstrap samples, and see how their sample means
vary.
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Setting up bootstrap sampling

Begin by setting up a dataframe that contains a row for each
bootstrap sample. I usually call this column sim. Do just 4 to get the
idea:

tibble(sim = 1:4)

# A tibble: 4 x 1
sim

<int>
1 1
2 2
3 3
4 4
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Drawing the bootstrap samples
Then set up to work one row at a time, and draw a bootstrap sample
of the attendances in each row:

tibble(sim = 1:4) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance,

replace = TRUE)))

# A tibble: 4 x 2
# Rowwise:

sim sample
<int> <list>

1 1 <dbl [25]>
2 2 <dbl [25]>
3 3 <dbl [25]>
4 4 <dbl [25]>

Each row of our dataframe contains all of a bootstrap sample of 25
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Sample means
Find the mean of each sample:

tibble(sim = 1:4) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance,

replace = TRUE))) %>%
mutate(my_mean = mean(sample))

# A tibble: 4 x 3
# Rowwise:

sim sample my_mean
<int> <list> <dbl>

1 1 <dbl [25]> 28472.
2 2 <dbl [25]> 28648.
3 3 <dbl [25]> 23329.
4 4 <dbl [25]> 24808.

These are (four simulated values of) the bootstrapped sampling
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Make a normal quantile plot of them

rather pointless here, but to get the idea:

tibble(sim = 1:4) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance, replace = TRUE))) %>%
mutate(my_mean = mean(sample)) %>%
ggplot(aes(sample = my_mean)) +

stat_qq() + stat_qq_line() -> g
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The (pointless) plot
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Now do again with a decent number of bootstrap samples

say 10000, to get a good look at the tails:

tibble(sim = 1:10000) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance,

replace = TRUE))) %>%
mutate(my_mean = mean(sample)) %>%
ggplot(aes(sample = my_mean)) +

stat_qq() + stat_qq_line() -> g
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The (better) plot
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Comments

This is very close to normal (only very slightly right-skewed)
The bootstrap says that the sampling distribution of the sample mean
is close to normal, even though the distribution of the data is not
A sample size of 25 is big enough to overcome the skewness that we
saw
This is the Central Limit Theorem in practice
It is surprisingly powerful.
Thus, the 𝑡-test is actually perfectly good here.
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Comments on the code 1/2
You might have been wondering about this:

tibble(sim = 1:4) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance,

replace = TRUE)))

# A tibble: 4 x 2
# Rowwise:

sim sample
<int> <list>

1 1 <dbl [25]>
2 2 <dbl [25]>
3 3 <dbl [25]>
4 4 <dbl [25]>
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Comments on the code 2/2

how did we squeeze all 25 sample values into one cell?
▶ sample is a so-called “list-column” that can contain anything.

why did we have to put list() around the sample()?
▶ because sample produces a collection of numbers, not just a single one
▶ the list() signals this: “make a list-column of samples”.
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Two samples

Assumption: both samples are from a normal distribution.
In this case, each sample should be “normal enough” given its sample
size, since Central Limit Theorem will help.
Use bootstrap on each group independently, as above.
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Kids learning to read
# A tibble: 44 x 2

group score
<chr> <dbl>

1 t 24
2 t 61
3 t 59
4 t 46
5 t 43
6 t 44
7 t 52
8 t 43
9 t 58

10 t 67
# i 34 more rows

ggplot(kids, aes(x=group, y=score)) + geom_boxplot()
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or, a normal quantile plot

ggplot(kids, aes(sample = score)) + stat_qq() +
stat_qq_line() + facet_wrap(~ group)
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Getting just the control group
Use filter to select rows where something is true:

kids %>% filter(group == "c") -> controls
controls

# A tibble: 23 x 2
group score
<chr> <dbl>

1 c 42
2 c 33
3 c 46
4 c 37
5 c 43
6 c 41
7 c 10
8 c 42
9 c 55

10 c 19
# i 13 more rows
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Bootstrap these
tibble(sim = 1:10000) %>%

rowwise() %>%
mutate(sample = list(sample(controls$score, replace = TRUE))) %>%
mutate(my_mean = mean(sample)) %>%
ggplot(aes(sample = my_mean)) + stat_qq() + stat_qq_line()
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… and the treatment group:
kids %>% filter(group == "t") -> treats
tibble(sim = 1:10000) %>%

rowwise() %>%
mutate(sample = list(sample(treats$score, replace = TRUE))) %>%
mutate(my_mean = mean(sample)) %>%
ggplot(aes(sample = my_mean)) + stat_qq() + stat_qq_line()
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Comments

sampling distributions of sample means both look pretty normal,
though treatment group is a tiny bit left-skewed
as we thought, no problems with our two-sample 𝑡 at all.
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