Bootstrap for sampling distribution of sample mean



Assessing assumptions

@ Our t-tests assume normality of variable being tested

@ but, Central Limit Theorem says that normality matters less if sample
is “large”

@ in practice “approximate normality” is enough, but how do we assess
whether what we have is normal enough?

@ so far, use histogram/boxplot and make a call, allowing for sample
size.
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What actually has to be normal

is: sampling distribution of sample mean

the distribution of sample mean over all possible samples

but we only have one sample!

Idea: assume our sample is representative of the population, and draw

samples from our sample (!), with replacement.

@ This gives an idea of what different samples from the population
might look like.

o Called bootstrap, after expression “to pull yourself up by your own

bootstraps”.
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Packages

library(tidyverse)



Blue Jays attendances

jays$attendance

[1] 48414 17264 15086 14433 21397 34743 44794 14184 15606
[10] 18581 19217 21519 21312 30430 42917 42419 29306 15062
[19] 16402 19014 21195 33086 37929 15168 17276

@ A bootstrap sample:

s <- sample(jays$attendance, replace = TRUE)
s

[1] 21195 34743 21312 44794 16402 19014 34743 21195 17264
[10] 18581 19014 19217 34743 19217 14433 15062 16402 15062
[19] 34743 15062 15086 15168 15086 48414 30430
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Sorting

@ |t is easier to see what is happening if we

attendances and the bootstrap sample:

sort (jays$attendance)

[1] 14184
[10] 18581
[19] 33086

sort(s)

[1] 14433
[10] 17264
[19] 30430

14433
19014
34743

15062
18581
34743

15062
19217
37929

15062
19014
34743

15086
21195
42419

15062
19014
34743

15168
21312
42917

15086
19217
34743

15606
21397
44794

15086
19217
44794

sort both the actual

16402 17264 17276
21519 29306 30430
48414

15168 16402 16402
21195 21195 21312
48414
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Getting mean of bootstrap sample
@ A bootstrap sample is same size as original, but contains repeated
values (eg. 15062) and missing ones (42917).
@ We need the mean of our bootstrap sample:

mean(s)

[1] 23055.28

@ This is a little different from the mean of our actual sample:

mean (jays$attendance)

[1] 25070.16

@ Want a sense of how the sample mean might vary, if we were able to

take repeated samples from our population.
o ldea: take lots of bootstrap samples, and see how their sample means

vary.
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Setting up bootstrap sampling

@ Begin by setting up a dataframe that contains a row for each
bootstrap sample. | usually call this column sim. Do just 4 to get the
idea:

tibble(sim = 1:4)

# A tibble: 4 x 1
sim
<int>
1

S wWw N -

2
3
4
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Drawing the bootstrap samples

@ Then set up to work one row at a time, and draw a bootstrap sample
of the attendances in each row:

tibble(sim = 1:4) %>%
rowwise() %>%
mutate(sample = list(sample(jays$attendance,
replace = TRUE)))

# A tibble: 4 x 2
# Rowwise:
sim sample
<int> <list>
1 <dbl [25]>
2 <dpbl [25]>
3 <dbl [25]>
4 <dbl [25]>

DS w N -

@ Each row of our dataframe contains all of a bootstrap sample of 25
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Sample means

@ Find the mean of each sample:

tibble(sim =

rowwise () %>%
mutate (sample =

mutate (my_mean =

# A tibble:
# Rowwise:

4 x 3

sim sample
<int> <list>

1 <dbl
2 <dbl
3 <dbl
4 <dbl

S W N -

@ These are (four simulated values of ) the bootstrapped sampling

[25]>
[25]>
[25]>
[25]>

1:4) %%

list(sample(jays$attendance,
replace = TRUE))) %>%
mean (sample))

my_mean

<dbl>
28472.
28648.
23329.
24808.
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Make a normal quantile plot of them

@ rather pointless here, but to get the idea:

tibble(sim = 1:4) %>%
rowwise () %>%
mutate(sample = list(sample(jays$attendance, replace = TRUE!

mutate (my_mean = mean(sample)) %>%
ggplot (aes(sample = my_mean)) +
stat_qq() + stat_qq_line() -> g
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The (pointless) plot

27000~
26500 -
26000~
>
25500~ .

25000~
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Now do again with a decent number of bootstrap samples

@ say 10000, to get a good look at the tails:

tibble(sim = 1:10000) %>%
rowwise () %>%
mutate (sample = list(sample(jays$attendance,
replace = TRUE))) %>%
mutate (my_mean = mean(sample)) %>%
ggplot(aes(sample = my_mean)) +
stat_qq() + stat_qq_line() -> g
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The (better) plot

35000~
30000 -
25000~

20000 -
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Comments

@ This is very close to normal (only very slightly right-skewed)

@ The bootstrap says that the sampling distribution of the sample mean
is close to normal, even though the distribution of the data is not

@ A sample size of 25 is big enough to overcome the skewness that we
saw

@ This is the Central Limit Theorem in practice

@ It is surprisingly powerful.

@ Thus, the t-test is actually perfectly good here.
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Comments on the code 1/2

@ You might have been wondering about this:

tibble(sim = 1:4) %>%
rowwise() %>%
mutate (sample = list(sample(jays$attendance,
replace = TRUE)))

# A tibble: 4 x 2
# Rowwise:
sim sample
<int> <1list>
1 <dbl [25]>
2 <dbl [25]>
3 <dbl [25]>
4 <dbl [25]>

W N -
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Comments on the code 2/2

@ how did we squeeze all 25 sample values into one cell?
» sample is a so-called “list-column” that can contain anything.
@ why did we have to put 1ist () around the sample()?

» because sample produces a collection of numbers, not just a single one
> the 1ist () signals this: “make a list-column of samples”.
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Two samples

@ Assumption: both samples are from a normal distribution.
@ In this case, each sample should be “normal enough” given its sample
size, since Central Limit Theorem will help.

@ Use bootstrap on each group independently, as above.
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Kids learning to read

# A tibble: 44 x 2
group score
<chr> <dbl>

t 24
61
59
46
43
44
52
43
58
10 67

# i 34 more rows

© 0 N O O W N+~
ct ct o  t o t o o

ggplot(kids, aes(x=group, y=score)) + geom_boxplot()
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or, a normal quantile plot

ggplot(kids, aes(sample = score)) + stat_qq() +
stat_qq_line() + facet_wrap(~ group)




Getting just the control group

@ Use filter to select rows where something is true:

kids %>% filter(group == "c") -> controls
controls

# A tibble: 23 x 2
group score
<chr> <dbl>

42

33

46

37

43

41

10

42

55

10 19

# i 13 more rows
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Bootstrap these

tibble(sim = 1:10000) %>%
rowwise() %>%
mutate(sample = list(sample(controls$score, replace = TRUE).
mutate (my_mean = mean(sample)) %>%
ggplot(aes(sample = my_mean)) + stat_qq() + stat_qq_line()
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. and the treatment group:

kids %>% filter(group == "t") -> treats
tibble(sim = 1:10000) %>%
rowwise() %>%
mutate(sample = list(sample(treats$score, replace = TRUE)))
mutate (my_mean = mean(sample)) %>%
ggplot (aes(sample = my_mean)) + stat_qq() + stat_qq_line()
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Comments

@ sampling distributions of sample means both look pretty normal,
though treatment group is a tiny bit left-skewed
@ as we thought, no problems with our two-sample ¢ at all.
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