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Analysis of variance

Analysis of variance used with:
▶ counted/measured response
▶ categorical explanatory variable(s)
▶ that is, data divided into groups, and see if response significantly

different among groups
▶ or, see whether knowing group membership helps to predict response.
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Two stages

Typically two stages:
▶ 𝐹-test to detect any differences among/due to groups
▶ if 𝐹-test significant, do multiple comparisons to see which groups

significantly different from which.
Need special multiple comparisons method because just doing (say)
two-sample 𝑡-tests on each pair of groups gives too big a chance of
finding “significant” differences by accident.
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Packages

These:

library(tidyverse)
library(broom)
library(car) # for Levene's text
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Example: Pain threshold and hair colour

Do people with different hair colour have different abilities to deal
with pain?
Men and women of various ages divided into 4 groups by hair colour:
light and dark blond, light and dark brown.
Each subject given a pain sensitivity test resulting in pain threshold
score: higher score is higher pain tolerance.
19 subjects altogether.
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The data
In hairpain.txt (some):
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Summarizing the groups
my_url <- "http://ritsokiguess.site/datafiles/hairpain.txt"
hairpain <- read_delim(my_url, " ")
hairpain %>%
group_by(hair) %>%
summarize(

n = n(),
xbar = mean(pain),
s = sd(pain)

)

# A tibble: 4 x 4
hair n xbar s
<chr> <int> <dbl> <dbl>

1 darkblond 5 51.2 9.28
2 darkbrown 5 37.4 8.32
3 lightblond 5 59.2 8.53
4 lightbrown 4 42.5 5.45

Brown-haired people seem to have lower pain tolerance.
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Boxplot

ggplot(hairpain, aes(x = hair, y = pain)) + geom_boxplot()
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Assumptions

Data should be:
▶ normally distributed within each group
▶ same spread for each group

darkbrown group has upper outlier (suggests not normal)
darkblond group has smaller IQR than other groups.
But, groups small.
Shrug shoulders and continue for moment.
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Testing equality of SDs

via Levene’s test in package car:

leveneTest(pain ~ hair, data = hairpain)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 3 0.3927 0.76
15

No evidence (at all) of difference among group SDs.
Possibly because groups small.
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Analysis of variance

hairpain.1 <- aov(pain ~ hair, data = hairpain)
summary(hairpain.1)

Df Sum Sq Mean Sq F value Pr(>F)
hair 3 1361 453.6 6.791 0.00411 **
Residuals 15 1002 66.8
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

P-value small: the mean pain tolerances for the four groups are not
all the same.
Which groups differ from which, and how?

Analysis of variance revisited 11 / 81



Multiple comparisons

Which groups differ from which? Multiple comparisons method. Lots.
Problem: by comparing all the groups with each other, doing many
tests, have large chance to (possibly incorrectly) reject 𝐻0 ∶ groups
have equal means.
4 groups: 6 comparisons (1 vs 2, 1 vs 3, …, 3 vs 4). 5 groups: 10
comparisons. Thus 6 (or 10) chances to make mistake.
Get “familywise error rate” of 0.05 (whatever), no matter how many
comparisons you’re doing.
My favourite: Tukey, or “honestly significant differences”: how far
apart might largest, smallest group means be (if actually no
differences). Group means more different: significantly different.
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Tukey

TukeyHSD:

TukeyHSD(hairpain.1)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = pain ~ hair, data = hairpain)

$hair
diff lwr upr p adj

darkbrown-darkblond -13.8 -28.696741 1.0967407 0.0740679
lightblond-darkblond 8.0 -6.896741 22.8967407 0.4355768
lightbrown-darkblond -8.7 -24.500380 7.1003795 0.4147283
lightblond-darkbrown 21.8 6.903259 36.6967407 0.0037079
lightbrown-darkbrown 5.1 -10.700380 20.9003795 0.7893211
lightbrown-lightblond -16.7 -32.500380 -0.8996205 0.0366467
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The old-fashioned way
List group means in order
Draw lines connecting groups that are not significantly different:

darkbrown lightbrown darkblond lightblond
37.4 42.5 51.2 59.2
-------------------------

---------------

lightblond significantly higher than everything except darkblond
(at 𝛼 = 0.05).
darkblond in middle ground: not significantly less than lightblond,
not significantly greater than darkbrown and lightbrown.
More data might resolve this.
Looks as if blond-haired people do have higher pain tolerance, but not
completely clear.
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Some other multiple-comparison methods

Work any time you do 𝑘 tests at once (not just ANOVA).
▶ Bonferroni: multiply all P-values by 𝑘.
▶ Holm: multiply smallest P-value by 𝑘, next-smallest by 𝑘 − 1, etc.
▶ False discovery rate: multiply smallest P-value by 𝑘/1, 2nd-smallest

by 𝑘/2, …, 𝑖-th smallest by 𝑘/𝑖.
Stop after non-rejection.
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Example

P-values 0.005, 0.015, 0.03, 0.06 (4 tests all done at once) Use
𝛼 = 0.05.
Bonferroni:

▶ Multiply all P-values by 4 (4 tests).
▶ Reject only 1st null.

Holm:
▶ Times smallest P-value by 4: 0.005 ∗ 4 = 0.020 < 0.05, reject.
▶ Times next smallest by 3: 0.015 ∗ 3 = 0.045 < 0.05, reject.
▶ Times next smallest by 2: 0.03 ∗ 2 = 0.06 > 0.05, do not reject. Stop.
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…Continued

With P-values 0.005, 0.015, 0.03, 0.06:
False discovery rate:

▶ Times smallest P-value by 4: 0.005 ∗ 4 = 0.02 < 0.05: reject.
▶ Times second smallest by 4/2: 0.015 ∗ 4/2 = 0.03 < 0.05, reject.
▶ Times third smallest by 4/3: 0.03 ∗ 4/3 = 0.04 < 0.05, reject.
▶ Times fourth smallest by 4/4: 0.06 ∗ 4/4 = 0.06 > 0.05, do not reject.

Stop.
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pairwise.t.test
with(hairpain, pairwise.t.test(pain, hair, p.adj = "none"))

Pairwise comparisons using t tests with pooled SD

data: pain and hair

darkblond darkbrown lightblond
darkbrown 0.01748 - -
lightblond 0.14251 0.00075 -
lightbrown 0.13337 0.36695 0.00817

P value adjustment method: none

with(hairpain, pairwise.t.test(pain, hair, p.adj = "holm"))

Pairwise comparisons using t tests with pooled SD

data: pain and hair

darkblond darkbrown lightblond
darkbrown 0.0699 - -
lightblond 0.4001 0.0045 -
lightbrown 0.4001 0.4001 0.0408

P value adjustment method: holm
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pairwise.t.test part 2
with(hairpain, pairwise.t.test(pain, hair, p.adj = "fdr"))

Pairwise comparisons using t tests with pooled SD

data: pain and hair

darkblond darkbrown lightblond
darkbrown 0.0350 - -
lightblond 0.1710 0.0045 -
lightbrown 0.1710 0.3670 0.0245

P value adjustment method: fdr

with(hairpain, pairwise.t.test(pain, hair, p.adj = "bon"))

Pairwise comparisons using t tests with pooled SD

data: pain and hair

darkblond darkbrown lightblond
darkbrown 0.1049 - -
lightblond 0.8550 0.0045 -
lightbrown 0.8002 1.0000 0.0490

P value adjustment method: bonferroni
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Comments

P-values all adjusted upwards from “none”.
Required because 6 tests at once.
Highest P-values for Bonferroni: most “conservative”.
Prefer Tukey or FDR or Holm.
Tukey only applies to ANOVA, not to other cases of multiple testing.
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Rats and vitamin B

What is the effect of dietary vitamin B on the kidney?
A number of rats were randomized to receive either a B-supplemented
diet or a regular diet.
Desired to control for initial size of rats, so classified into size classes
lean and obese.
After 20 weeks, rats’ kidneys weighed.
Variables:

▶ Response: kidneyweight (grams).
▶ Explanatory: diet, ratsize.

Read in data:

my_url <- "http://ritsokiguess.site/datafiles/vitaminb.txt"
vitaminb <- read_delim(my_url, " ")
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The data
vitaminb

# A tibble: 28 x 3
ratsize diet kidneyweight
<chr> <chr> <dbl>

1 lean regular 1.62
2 lean regular 1.8
3 lean regular 1.71
4 lean regular 1.81
5 lean regular 1.47
6 lean regular 1.37
7 lean regular 1.71
8 lean vitaminb 1.51
9 lean vitaminb 1.65
10 lean vitaminb 1.45
# i 18 more rows
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Grouped boxplot
ggplot(vitaminb, aes(
x = ratsize, y = kidneyweight,
fill = diet

)) + geom_boxplot()
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What’s going on?
Calculate group means:

summary <- vitaminb %>%
group_by(ratsize, diet) %>%
summarize(n = n(), mean = mean(kidneyweight))

summary

# A tibble: 4 x 4
# Groups: ratsize [2]
ratsize diet n mean
<chr> <chr> <int> <dbl>

1 lean regular 7 1.64
2 lean vitaminb 7 1.53
3 obese regular 7 2.64
4 obese vitaminb 7 2.67

Rat size: a large and consistent effect.
Diet: small/no effect (compare same rat size, different diet).
Effect of rat size same for each diet: no interaction.

Analysis of variance revisited 24 / 81



ANOVA with interaction

vitaminb.1 <- aov(kidneyweight ~ ratsize * diet,
data = vitaminb

)
summary(vitaminb.1)

Df Sum Sq Mean Sq F value Pr(>F)
ratsize 1 8.068 8.068 141.179 1.53e-11 ***
diet 1 0.012 0.012 0.218 0.645
ratsize:diet 1 0.036 0.036 0.638 0.432
Residuals 24 1.372 0.057
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Significance/nonsignificance as we expected.
Note no significant interaction (can be removed).
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Interaction plot

Plot mean of response variable against one of the explanatory, using
other one as groups. Start from summary:

g <- ggplot(summary, aes(
x = ratsize, y = mean,
colour = diet, group = diet

)) +
geom_point() + geom_line()

For this, have to give both group and colour.
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The interaction plot
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Take out interaction
vitaminb.2 <- update(vitaminb.1, . ~ . - ratsize:diet)
summary(vitaminb.2)

Df Sum Sq Mean Sq F value Pr(>F)
ratsize 1 8.068 8.068 143.256 7.59e-12 ***
diet 1 0.012 0.012 0.221 0.643
Residuals 25 1.408 0.056
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

No Tukey for diet: not significant.
No Tukey for ratsize: only two sizes, and already know that obese
rats have larger kidneys than lean ones.
Bottom line: diet has no effect on kidney size once you control for
size of rat.

TukeyHSD(vitaminb.2)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = kidneyweight ~ ratsize + diet, data = vitaminb)

$ratsize
diff lwr upr p adj

obese-lean 1.073571 0.8888386 1.258304 0

$diet
diff lwr upr p adj

vitaminb-regular -0.04214286 -0.2268756 0.1425899 0.6425419
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Assessing assumptions: residuals

In two-way ANOVA, not many observations per treatment group.
Difficult to check for normality / equal spreads.
But, any regular ANOVA also a regression.
Use regression residual ideas.
In ANOVA, one fitted value per treatment group (based on means).
Residual: observation minus fitted value.
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Previous ANOVA as regression
vitaminb.3 <- lm(kidneyweight ~ ratsize + diet, data = vitaminb)
summary(vitaminb.3)

Call:
lm(formula = kidneyweight ~ ratsize + diet, data = vitaminb)

Residuals:
Min 1Q Median 3Q Max

-0.62893 -0.12625 0.04071 0.14607 0.35321

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.60536 0.07768 20.67 < 2e-16 ***
ratsizeobese 1.07357 0.08970 11.97 7.59e-12 ***
dietvitaminb -0.04214 0.08970 -0.47 0.643
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2373 on 25 degrees of freedom
Multiple R-squared: 0.8516, Adjusted R-squared: 0.8397
F-statistic: 71.74 on 2 and 25 DF, p-value: 4.39e-11Analysis of variance revisited 30 / 81



Reproduce ANOVA
drop1(vitaminb.3, test = "F")

Single term deletions

Model:
kidneyweight ~ ratsize + diet

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 1.4079 -77.722
ratsize 1 8.0679 9.4758 -26.337 143.2563 7.593e-12 ***
diet 1 0.0124 1.4204 -79.476 0.2207 0.6425
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANOVA and regression drop1 output always the same.
this time, ANOVA and regression summary output have same
P-values, but only because categorical variables both have two levels.
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Are the residuals normal?

ggplot(vitaminb.3, aes(sample=.resid)) +
stat_qq() + stat_qq_line()
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Residuals against fitted

ggplot(vitaminb.3, aes(x=.fitted, y=.resid)) + geom_point()
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Comments

2 rat sizes, 2 diets: only 2 × 2 = 4 different fitted values
larger fitted values have greater spread (fan-out, transformation?)
add residuals to data to plot residuals against size, diet (augment
from broom):

vitaminb.3 %>% augment(vitaminb) -> vitaminb.3a

explanatory ratsize, diet categorical, so plot resid vs. them with
boxplots.
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Residuals vs rat size

ggplot(vitaminb.3a, aes(x = ratsize, y = .resid)) +
geom_boxplot()
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Residuals vs diet

ggplot(vitaminb.3a, aes(x = diet, y = .resid)) +
geom_boxplot()
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Comments

there are low outliers on the plot against diet
residuals for obese rats seem more spread out than for lean rats
case for transformation of rat weights
however, story from our analysis very clear:

▶ rat size strongly significant
▶ diet nowhere near significant

and so expect transformation to make no difference to conclusions.
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The auto noise data

In 1973, the President of Texaco cited an automobile filter developed by
Associated Octel Company as effective in reducing pollution. However,
questions had been raised about the effects of filter silencing. He referred
to the data included in the report (and below) as evidence that the
silencing properties of the Octel filter were at least equal to those of
standard silencers.

u <- "http://ritsokiguess.site/datafiles/autonoise.txt"
autonoise <- read_table(u)
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The data
autonoise

# A tibble: 36 x 4
noise size type side
<dbl> <chr> <chr> <chr>

1 840 M Std R
2 770 L Octel L
3 820 M Octel R
4 775 L Octel R
5 825 M Octel L
6 840 M Std R
7 845 M Std L
8 825 M Octel L
9 815 M Octel L
10 845 M Std R
# i 26 more rows
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Making boxplot

Make a boxplot, but have combinations of filter type and engine size.
Use grouped boxplot again, thus:

g <- autonoise %>%
ggplot(aes(x = size, y = noise, fill = type)) +
geom_boxplot()
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The boxplot
See difference in engine noise between Octel and standard is larger for
medium engine size than for large or small.
Some evidence of differences in spreads (ignore for now):
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ANOVA

autonoise.1 <- aov(noise ~ size * type, data = autonoise)
summary(autonoise.1)

Df Sum Sq Mean Sq F value Pr(>F)
size 2 26051 13026 199.119 < 2e-16 ***
type 1 1056 1056 16.146 0.000363 ***
size:type 2 804 402 6.146 0.005792 **
Residuals 30 1962 65
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The interaction is significant, as we suspected from the boxplots.
The within-group spreads don’t look very equal, but only based on 6
obs each.
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Tukey: ouch!

autonoise.2 <- TukeyHSD(autonoise.1)
autonoise.2$`size:type`

diff lwr upr p adj
M:Octel-L:Octel 51.6666667 37.463511 65.869823 6.033496e-11
S:Octel-L:Octel 52.5000000 38.296844 66.703156 4.089762e-11
L:Std-L:Octel 5.0000000 -9.203156 19.203156 8.890358e-01
M:Std-L:Octel 75.8333333 61.630177 90.036489 4.962697e-14
S:Std-L:Octel 55.8333333 41.630177 70.036489 9.002910e-12
S:Octel-M:Octel 0.8333333 -13.369823 15.036489 9.999720e-01
L:Std-M:Octel -46.6666667 -60.869823 -32.463511 6.766649e-10
M:Std-M:Octel 24.1666667 9.963511 38.369823 1.908995e-04
S:Std-M:Octel 4.1666667 -10.036489 18.369823 9.454142e-01
L:Std-S:Octel -47.5000000 -61.703156 -33.296844 4.477636e-10
M:Std-S:Octel 23.3333333 9.130177 37.536489 3.129974e-04
S:Std-S:Octel 3.3333333 -10.869823 17.536489 9.787622e-01
M:Std-L:Std 70.8333333 56.630177 85.036489 6.583623e-14
S:Std-L:Std 50.8333333 36.630177 65.036489 8.937329e-11
S:Std-M:Std -20.0000000 -34.203156 -5.796844 2.203265e-03
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Interaction plot

This time, don’t have summary of mean noise for each size-type
combination.
One way is to compute summaries (means) first, and feed into
ggplot as in vitamin B example.
Or, have ggplot compute them for us, thus:

g <- ggplot(autonoise, aes(
x = size, y = noise,
colour = type, group = type

)) +
stat_summary(fun = mean, geom = "point") +
stat_summary(fun = mean, geom = "line")
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Interaction plot
The lines are definitely not parallel, showing that the effect of type is
different for medium-sized engines than for others:
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If you don’t like that…

… then compute the means first:

autonoise %>%
group_by(size, type) %>%
summarize(mean_noise = mean(noise)) %>%
ggplot(aes(
x = size, y = mean_noise, group = type,
colour = type

)) + geom_point() + geom_line() -> g
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Interaction plot again
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Simple effects for auto noise example

In auto noise example, weren’t interested in all comparisons between
car size and filter type combinations.
Wanted to demonstrate (lack of) difference between filter types for
each engine type.
These are called simple effects of one variable (filter type)
conditional on other variable (engine type).
To do this, pull out just the data for small cars, compare noise for the
two filter types. Then repeat for medium and large cars. (Three
one-way ANOVAs.)
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Do it using dplyr tools

Small cars:

autonoise %>%
filter(size == "S") %>%
aov(noise ~ type, data = .) %>%
summary()

Df Sum Sq Mean Sq F value Pr(>F)
type 1 33.3 33.33 0.548 0.476
Residuals 10 608.3 60.83

No filter difference for small cars.
For Medium, change S to M and repeat.
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Simple effect of filter type for medium cars

autonoise %>%
filter(size == "M") %>%
aov(noise ~ type, data = .) %>%
summary()

Df Sum Sq Mean Sq F value Pr(>F)
type 1 1752.1 1752.1 68.93 8.49e-06 ***
Residuals 10 254.2 25.4
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There is an effect of filter type for medium cars. Look at means to
investigate (over).
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Mean noise for each filter type

… for medium engine size:

autonoise %>%
filter(size == "M") %>%
group_by(type) %>%
summarize(m = mean(noise))

# A tibble: 2 x 2
type m
<chr> <dbl>

1 Octel 822.
2 Std 846.

Octel filters produce less noise for medium cars.
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Large cars

Large cars:

autonoise %>%
filter(size == "L") %>%
aov(noise ~ type, data = .) %>%
summary()

Df Sum Sq Mean Sq F value Pr(>F)
type 1 75 75 0.682 0.428
Residuals 10 1100 110

No significant difference again.
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All at once, using split/apply/combine
The “split” part:

autonoise %>%
group_by(size) %>%
nest()

# A tibble: 3 x 2
# Groups: size [3]
size data
<chr> <list>

1 M <tibble [12 x 3]>
2 L <tibble [12 x 3]>
3 S <tibble [12 x 3]>

Now have three rows, with the data frame for each size encoded as one
element of this data frame.

Analysis of variance revisited 53 / 81



Apply
Write function to do aov on a data frame with columns noise and
type, returning P-value:

aov_pval <- function(x) {
noise.1 <- aov(noise ~ type, data = x)
gg <- tidy(noise.1)
gg$p.value[1]

}

Test it:

autonoise %>%
filter(size == "L") %>%
aov_pval()

[1] 0.428221

Check.
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Combine
Apply this function to each of the nested data frames (one per engine
size):

autonoise %>%
nest_by(size) %>%
rowwise() %>%
mutate(p_val = aov_pval(data)) %>%
select(-data)

# A tibble: 3 x 2
# Rowwise:
size p_val
<chr> <dbl>

1 L 0.428
2 M 0.00000849
3 S 0.476
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Tidy up
The data column was stepping-stone to getting answer. Don’t need
it any more:

autonoise %>%
nest_by(size) %>%
rowwise() %>%
mutate(p_val = aov_pval(data)) %>%
select(-data) -> simple_effects

simple_effects

# A tibble: 3 x 2
# Rowwise:
size p_val
<chr> <dbl>

1 L 0.428
2 M 0.00000849
3 S 0.476
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Simultaneous tests
When testing simple effects, doing several tests at once. (In this case,
3.) Should adjust P-values for this. Eg. Bonferroni:

simple_effects %>%
mutate(p_val_adj = p_val * 3)

# A tibble: 3 x 3
# Rowwise:
size p_val p_val_adj
<chr> <dbl> <dbl>

1 L 0.428 1.28
2 M 0.00000849 0.0000255
3 S 0.476 1.43

No change in rejection decisions.
Octel filters sig. better in terms of noise for medium cars, and not
sig. different for other sizes.
Octel filters never significantly worse than standard ones.
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Confidence intervals

Perhaps better way of assessing simple effects: look at confidence
intervals rather than tests.
Gives us sense of accuracy of estimation, and thus whether
non-significance might be lack of power: “absence of evidence is not
evidence of absence’ ’.
Works here because two filter types, using t.test for each engine
type.
Want to show that the Octel filter is equivalent to or better than the
standard filter, in terms of engine noise.
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Equivalence and noninferiority

Known as “equivalence testing” in medical world. A good read: link.
Basic idea: decide on size of difference 𝛿 that would be considered
“equivalent”, and if CI entirely inside ±𝛿, have evidence in favour of
equivalence.
We really want to show that the Octel filters are “no worse” than the
standard one: that is, equivalent or better than standard filters.
Such a “noninferiority test” done by checking that upper limit of
CI, new minus old, is less than 𝛿. (This requires careful thinking
about (i) which way around the difference is and (ii) whether a higher
or lower value is better.)
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CI for small cars

Same idea as for simple effect test:

autonoise %>%
filter(size == "S") %>%
t.test(noise ~ type, data = .) %>%
pluck("conf.int")

[1] -14.517462 7.850795
attr(,"conf.level")
[1] 0.95
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CI for medium cars

autonoise %>%
filter(size == "M") %>%
t.test(noise ~ type, data = .) %>%
pluck("conf.int")

[1] -30.75784 -17.57549
attr(,"conf.level")
[1] 0.95
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CI for large cars

autonoise %>%
filter(size == "L") %>%
t.test(noise ~ type, data = .) %>%
pluck("conf.int")

[1] -19.270673 9.270673
attr(,"conf.level")
[1] 0.95
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Or, all at once: split/apply/combine

ci_func <- function(x) {
tt <- t.test(noise ~ type, data = x)
tt$conf.int

}

autonoise %>% nest_by(size) %>%
rowwise() %>%
mutate(ci = list(ci_func(data))) %>%
unnest_wider(ci, names_sep = "_") -> cis
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Results

cis %>% select(size, starts_with("ci"))

# A tibble: 3 x 3
size ci_1 ci_2
<chr> <dbl> <dbl>

1 L -19.3 9.27
2 M -30.8 -17.6
3 S -14.5 7.85
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Procedure

Function to get CI of difference in noise means for types of filter on
input data frame
Nest by size (mini-df data per size)
Calculate CI for each thing in data: CI is two numbers long
unnest ci column (wider) to see two numbers in each CI.
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CIs and noninferiority test

Suppose we decide that a 20 dB difference would be considered
equivalent. (I have no idea whether that is reasonable.)
Intervals:

cis %>% select(-data)

# A tibble: 3 x 3
size ci_1 ci_2
<chr> <dbl> <dbl>

1 L -19.3 9.27
2 M -30.8 -17.6
3 S -14.5 7.85
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Comments

In all cases, upper limit of CI is less than 20 dB. The Octel filters are
“noninferior” to the standard ones.
Caution: we did 3 procedures at once again. The true confidence
level is not 95%. (Won’t worry about that here.)
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Contrasts in ANOVA

Sometimes, don’t want to compare all groups, only some of them.
Might be able to specify these comparisons ahead of time; other
comparisons of no interest.
Wasteful to do ANOVA and Tukey.
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Example: chainsaw kickback
From link.
Forest manager concerned about safety of chainsaws issued to field
crew. 4 models of chainsaws, measure “kickback” (degrees of
deflection) for 5 of each:

A B C D
-----------
42 28 57 29
17 50 45 29
24 44 48 22
39 32 41 34
43 61 54 30

So far, standard 1-way ANOVA: what differences are there among
models?
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chainsaw kickback (2)

But: models A and D are designed to be used at home, while models
B and C are industrial models.
Suggests these comparisons of interest:

▶ home vs. industrial
▶ the two home models A vs. D
▶ the two industrial models B vs. C.

Don’t need to compare all the pairs of models.
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What is a contrast?

Contrast is a linear combination of group means.
Notation: 𝜇𝐴 for (population) mean of group 𝐴, and so on. In
example:

▶ compare two home models: 𝐻0 ∶ 𝜇𝐴 − 𝜇𝐷 = 0.
▶ compare two industrial models: 𝐻0 ∶ 𝜇𝐵 − 𝜇𝐶 = 0.
▶ compare average of two home models vs. average of two industrial

models: 𝐻0 ∶ 1
2(𝜇𝐴 + 𝜇𝐷) − 1

2(𝜇𝐵 + 𝜇𝐶) = 0 or
𝐻0 ∶ 0.5𝜇𝐴 − 0.5𝜇𝐵 − 0.5𝜇𝐶 + 0.5𝜇𝐷 = 0.

Note that coefficients of contrasts add to 0, and right-hand side is 0.
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Contrasts in R

Comparing two home models A and D (𝜇𝐴 − 𝜇𝐷 = 0):

c.home <- c(1, 0, 0, -1)

Comparing two industrial models B and C (𝜇𝐵 − 𝜇𝐶 = 0):

c.industrial <- c(0, 1, -1, 0)

Comparing home average vs. industrial average
(0.5𝜇𝐴 − 0.5𝜇𝐵 − 0.5𝜇𝐶 + 0.5𝜇𝐷 = 0):

c.home.ind <- c(0.5, -0.5, -0.5, 0.5)
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Orthogonal contrasts
What happens if we multiply the contrast coefficients one by one?

# c.home
c.industrial

[1] 0 1 -1 0

c.home.ind

[1] 0.5 -0.5 -0.5 0.5

# c.home * c.industrial
# c.home * c.home.ind
c.industrial * c.home.ind

[1] 0.0 -0.5 0.5 0.0

in each case, the results add up to zero. Such contrasts are called
orthogonal.
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Orthogonal contrasts (2)

Compare these:

c1 <- c(1, -1, 0)
c2 <- c(0, 1, -1)
sum(c1 * c2)

[1] -1

Not zero, so c1 and c2 are not orthogonal.

Orthogonal contrasts are much easier to deal with.
Can use non-orthogonal contrasts, but more trouble (beyond us).
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Read in data

url <- "http://ritsokiguess.site/datafiles/chainsaw.txt"
chain.wide <- read_table(url)
chain.wide

# A tibble: 5 x 4
A B C D

<dbl> <dbl> <dbl> <dbl>
1 42 28 57 29
2 17 50 45 29
3 24 44 48 22
4 39 32 41 34
5 43 61 54 30
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Tidying

Need all the kickbacks in one column:

chain.wide %>%
pivot_longer(A:D, names_to = "model",

names_ptypes = list(model = factor()),
values_to = "kickback") -> chain
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Starting the analysis (2)
The proper data frame:

chain

# A tibble: 20 x 2
model kickback
<fct> <dbl>

1 A 42
2 B 28
3 C 57
4 D 29
5 A 17
6 B 50
7 C 45
8 D 29
9 A 24
10 B 44
11 C 48
12 D 22
13 A 39
14 B 32
15 C 41
16 D 34
17 A 43
18 B 61
19 C 54
20 D 30
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Setting up contrasts

m <- cbind(c.home, c.industrial, c.home.ind)
m

c.home c.industrial c.home.ind
[1,] 1 0 0.5
[2,] 0 1 -0.5
[3,] 0 -1 -0.5
[4,] -1 0 0.5

contrasts(chain$model) <- m
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ANOVA as if regression
chain.1 <- lm(kickback ~ model, data = chain)
summary(chain.1)

Call:
lm(formula = kickback ~ model, data = chain)

Residuals:
Min 1Q Median 3Q Max

-16.00 -7.10 0.60 6.25 18.00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 38.450 2.179 17.649 6.52e-12 ***
modelc.home 2.100 3.081 0.682 0.50524
modelc.industrial -3.000 3.081 -0.974 0.34469
modelc.home.ind -15.100 4.357 -3.466 0.00319 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.743 on 16 degrees of freedom
Multiple R-squared: 0.4562, Adjusted R-squared: 0.3542
F-statistic: 4.474 on 3 and 16 DF, p-value: 0.01833
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Conclusions

tidy(chain.1) %>% select(term, p.value)

# A tibble: 4 x 2
term p.value
<chr> <dbl>

1 (Intercept) 6.52e-12
2 modelc.home 5.05e- 1
3 modelc.industrial 3.45e- 1
4 modelc.home.ind 3.19e- 3

Two home models not sig. diff. (P-value 0.51)
Two industrial models not sig. diff. (P-value 0.34)
Home, industrial models are sig. diff. (P-value 0.0032).
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Means by model
The means:

chain %>%
group_by(model) %>%
summarize(mean.kick = mean(kickback)) %>%
arrange(desc(mean.kick))

# A tibble: 4 x 2
model mean.kick
<fct> <dbl>

1 C 49
2 B 43
3 A 33
4 D 28.8

Home models A & D have less kickback than industrial ones B & C.
Makes sense because industrial users should get training to cope with
additional kickback.
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